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Why? 

§ LAPACK 
–  Linear Algebra PACKage 
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Why? 

§ LAPACK 
–  Linear Algebra PACKage 
–  written in Fortran 90 
–  highly optimized 

§  “The original goal of the LAPACK was to … run efficiently on shared-
memory vector and parallel processors.” 
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How? 

§ LAPACK 
1.  invoke library code 
2.  pass data into library 
3.  access data from Java 
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Overview 

§ Existing 
–  Java Native Interface (JNI) & JNR library 
–  java.nio.DirectByteBuffer 
–  sun.misc.Unsafe (get*/set*) 

§  JDK9 
–  j.l.i.VarHandle views over ByteBuffers 

§ Future 
–  Project Panama 
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Native Code 
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Native Code 

§ LAPACK 
1.  invoke library code 
2.  pass data into library 
3.  access data from Java 

B = A2 
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JNI 
@since 1.1 
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JNI 

class	LibC	{	
		static	native	long	getpid();	
}	

jlong	JNICALL	Java_LibC_getpid(	
		JNIEnv*	env,	jclass	c)	{	
	 	return	getpid();	
}	

Usage scenario 
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JNI 

jlong	JNICALL	Java_...(JNIEnv*	env,	
	 	 	 	 	 	 	 	 	 	 	 	 			jclass	cls,		
	 	 	 	 	 	 	 	 	 	 	 	 			jobject	obj)	{	
	
jmethodID	mid	=	env->GetMethodID(cls,	“m”,	“(I)J”);	
	
jlong	result	=	env->CallLongMethod(obj,	mid,	10);	

Upcall 
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JNI 

jlong	JNICALL	Java_...(JNIEnv*	env,	
	 	 	 	 	 	 	 	 	 	 	 	 			jclass	cls,		
	 	 	 	 	 	 	 	 	 	 	 	 			jobject	obj)	{	
	
jfieldID	fid	=	env->GetFieldID(cls,	“f”,	“J”);	
	
jlong	result	=	env->GetLongField(obj,	fid);	
jlong	result	=	env->SetLongField(obj,	fid,	10);	
	

Data access 
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JNI 

§ Operations on 
–  Classes 
–  Strings 
–  Arrays 
–  Monitors 

Native API: JNIEnv 
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Java Frame

Java Heap Native Memory

Native Frame

GC roots
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jobjectraw ptr address

Java Heap

Native Memory

ptr
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Java

Native

Java Heap

Native Memory

VM

Thread State

Anatomy of JNI call 
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Java

Native

Java Heap

Native Memory

VM

Thread State

Anatomy of JNI call 
Safepoints 
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JNI 

§ Pros 
–  seamless integration 

§  looks like a Java method 
–  rich native API to interact with Java 

§ Cons 
–  manual binding 
–  invocation overhead 
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JNI 
Victim of its own success? 
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JNI 
Sum array elements 

jint	JNICALL	Java_...(JNIEnv	*env,	jclass	c,	jobject	arr)	{		
		jint	len	=	(*env)->GetArrayLength(env,	arr);	
		jbyte*	a	=	(*env)->GetPrimitiveArrayCritical(env,	arr,	0);	
		…	
		return	sum;	
}	

empty sum 1 sum 103 sum 106 
JNI 11.4±0.3 ns 178.0±7.1 ns 798±32 ns 641±51 µs 
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Critical JNI 
/* @since 7 */ 
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Critical JNI 
Sum array elements 
 

jint	JNICALL	JavaCritical_...(jint	length,	jbyte*	first)	{		
		...	
		return	sum;	
}	

empty sum 1 sum 103 sum 106 
JNI 11.4±0.3 ns 178.0±7.1 ns 798±32 ns 641±51 µs 
CriticalJNI 11.4±0.3 ns 17.2±0.8 ns 680±22 ns 636±12 µs 
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Critical JNI 

§ only static, non-synchronized methods supported 

Limitations 
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Critical JNI 

§ only static, non-synchronized methods supported 
§ no JNIEnv* 

–  hence, no upcalls or access to Java heap 

Limitations 
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Critical JNI 

§ only static, non-synchronized methods supported 
§ no JNIEnv* 
§ arguments: primitives or primitive arrays 

–  [I => (length, I*) 
–  null => (0, NULL) 

Limitations 
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Critical JNI 

§ only static, non-synchronized methods supported 
§ no JNIEnv* 
§ arguments: primitives or primitive arrays 

–  [I => (length, I*) 
–  null => (0, NULL) 

§ no object arguments 

Limitations 
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Critical JNI 

§ only static, non-synchronized methods supported 
§ no JNIEnv* 
§ arguments: primitives or primitive arrays 

–  [I => (length, I*) 
–  null => (0, NULL) 

§ no object arguments 
§ used only in optimized code 

–  2 versions are needed: ordinary JNI & critical JNI versions 

Limitations 
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int	printf(const	char	*format,	...)	

Hard cases 
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		void	qsort(	
	void*	base,		
	size_t	nel,		
	size_t	width,	
	int	(*cmp)(const	void*,	const	void*));	

Hard cases 
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JNR 
Java Native Runtime 
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JNR 

public interface LibC { 
    @pid_t long getpid(); 
} 
 
LibC lib = LibraryLoader 
  .create(LibC.class) 
  .load("c"); 

 
libc.getpid() 
 
 

Usage scenario 

JNRJava

Native

bindings

Interfaces

libffi

Target

User-defined

generated 
on-the-fly
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DEMO 

§ native call 
–  getpid 

§  structs 
–  gettimeofday 

§ upcalls 
–  qsort 
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JNR 

§ Pros 
–  automatic binding of native methods 

§ Cons 
–  manual interface extraction  

§  doesn’t scale 
–  still uses JNI to perform native calls 
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Better JNI 
Easier, safer, faster!  
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“If non-Java programmers find some library 
useful and easy to access, it should be 
similarly accessible to Java programmers.” 

John Rose, JVM Architect,  

Oracle Corporation 
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Project Panama 
“Bridging the gap” 
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Better JNI 

pid_t get_pid(); 
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Easier 

public	interface	LibC	{	
				long	getpid();	
}	
	
LibC	libc	=	Library	
	 	 	.load(LibC.class,	“c”);	
	
libc.getpid();	

Better JNI 

j.l.iJava

Native

bindings

Interfaces

JVM stubs

Target

User-defined

Library

generated 
on-the-fly

produced  
by jextract
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Easier 

public	interface	LibC	{	
				long	getpid();	
}	
	
LibC	libc	=	Library.load(LibC.class,	“c”	/*	lib_name	*/	);	
	
libc.getpid();	

Better JNI 
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Faster 
Better JNI 

callq 0x1057b2eb0  ; getpid entry 
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Faster 

MethodType	mt	=	MethodType.methodType(int.class);	//	pid_t	
MethodHandle	mh	=	
				MethodHandles.lookup().findNative("getpid",	mt);	
	
int	pid	=	(int)mh.invokeExact();	
	

Better JNI 

getpid 
JNI 13.7 ± 0.5 ns 
Direct call   3.4 ± 0.2 ns 
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Safer 

§ no crashes 
§ no leaks 
§ no hangs 
§ no privilege escalation  
§ no unguarded casts 
 

Better JNI 
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Safety vs Speed 
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Safety vs Speed 
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Safety vs Speed 
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Safety vs Speed 
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Trust Levels 
Better JNI 

Untrusted 
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Trust Levels 
Better JNI 

Trusted 
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Trust Levels 
Better JNI 

Privileged 
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Usage 
Better JNI 
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gettimeofday 
Better	JNI 

/*	time.h	*/	
	
struct	{	
				time_t						tv_sec;			
				suseconds_t	tv_usec;		
}	timeval;	
	

int	gettimeofday(struct	timeval*	tv,	struct	timezone*	tz);	

	
	
struct	{	
				int	tz_minuteswest;			
				int	tz_dsttime;		
}	timezone;	
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Carrier Types 

§ Java	
boolean	
byte	
short	
char	
int	
long	
…	

§ C	
char	
short	
float	
int	
long	
long	long	
…	

?
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Carrier Types 

§ Java	
boolean		(uint8_t)	
byte					(int8_t)	
short				(int16_t)	
char					(uint16_t)	
int						(int32_t)	
long					(int64_t)	
…	

§ C	
char	
short	
float	
int	
long	
long	long	
…	

?
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$ jextract time.h 
Better JNI 

interface	Time	{	
	
interface	Timeval	{	
				long	tv_sec$get();	
				void	tv_sec$set(long);	
				long	tv_usec$get();	
				void	tv_usec$set(long);			
}	
	

int	gettimeofday(Timeval,	Timezone);	

interface	Timezone	{	
				int		tz_...$get();	
				void	tz_...$set(int);	
				int		tz_...$get();	
				void	tz_...$set(int);			
}	
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Foreign Layouts 

§ Native data requires special address arithmetic  
–  Native layouts should not be built into the JVM  
–  Native types are unsafe, so trusted code must manage the bits  

§ Solution: A metadata-driven Layout API  

§ As a bonus, layouts other than C and Java are naturally supported  
–  Network protocols, specialized in-memory data stores, mapped files, etc.  

5
8
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Better JNI 
Data Layout 

interface	Timeval	{	
…	
				@Offset(offset=0L)		
				long	tv_sec$get();	
…	
				@Offset(offset=64L)	
				long	tv_usec$get();	
…	
	
	§ work on Layout Definition Language (LDL) is in progress 

–  https://github.com/J9Java/panama-docs/blob/master/StateOfTheLDL.html 
–  http://cr.openjdk.java.net/~jrose/panama/minimal-ldl.html 
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Runtime 
Better JNI 
Library	lib	=	Library.create(“c”);	
	
Time	time				=	lib.create(Time.class);	
Timeval	tval	=	lib.create(Timeval.class);	
	
int	res	=	time.gettimeofday(tval,	null);	
	
if	(res	==	0)	{	
		long	tv_sec		=	tval.tv_sec$get();	
		long	tv_usec	=	tval.tv_usec$get();	
}	else	{	/*	error	handling	*/	}	
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Runtime 
Better JNI 
Library	lib	=	Library.create(“c”);	
	
Time	time				=	lib.create(Time.class);	
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int	res	=	time.gettimeofday(tval,	null);	
	
if	(res	==	0)	{	
		long	tv_sec		=	tval.tv_sec$get();	
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Runtime 
Better JNI 
Library	lib	=	Library.create(“c”);	
	
Time	time				=	lib.create(Time.class);	
Timeval	tval	=	lib.create(Timeval.class);	
	
int	res	=	time.gettimeofday(tval,	null);	
	
if	(res	==	0)	{	
		long	tv_sec		=	tval.tv_sec$get();	
		long	tv_usec	=	tval.tv_usec$get();	
}	else	{	/*	error	handling	*/	}	
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Runtime 
Better JNI 
Library	lib	=	Library.create(“c”);	
	
Time	time				=	lib.create(Time.class);	
Timeval	tval	=	lib.create(Timeval.class);	
	
int	res	=	time.gettimeofday(tval,	null);	
	
if	(res	==	0)	{	
		long	tv_sec		=	tval.tv_sec$get();	
		long	tv_usec	=	tval.tv_usec$get();	
}	else	{	/*	error	handling	*/	}	
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Resources 
Explicit management 

Timeval	tval	=	null;	
try	{	
		tval	=	lib.create(Timeval.class);	
	
		int	res	=	time.gettimeofday(tval,	null);	
		if	(res	==	0)	{	
				long	tv_sec		=	tval.tv_sec$get();	
				long	tv_usec	=	tval.tv_usec$get();	
		}	else	{	/*	error	handling	*/	}	
}	finally	{	
		if	(tval	!=	null)	{	
				lib.free(tval);	
				tval	=	null;	
}}	
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Resources 
Try-with-resources 

interface	Timeval	extends	AutoCloseable	{	…	}	
	
	
try	(Timeval	tval	=	lib.create(Timeval.class))	{	
		int	res	=	time.gettimeofday(tval,	null);	
		if	(res	==	0)	{	
				long	tv_sec		=	tval.tv_sec$get();	
				long	tv_usec	=	tval.tv_usec$get();	
		}	else	{	/*	error	handling	*/	}	
}	
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Resources 
Scoped memory 

try	(Scope	scope	=	lib.createScope())	{	
		TimeVal	tval	=	scope.create(TimeVal.class);	
		int	res	=	time.gettimeofday(tval,	null);	
		if	(res	==	0)	{	
				long	tv_sec		=	tval.tv_sec$get();	
				long	tv_usec	=	tval.tv_usec$get();	
		}	else	{	/*	error	handling	*/	}	
}	
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Resources 
Scoped memory 

TimeVal	tval	=	null;	
		
try	(Scope	scope	=	lib.createScope())	{	
		tval	=	scope.create(TimeVal.class);	
		int	res	=	time.gettimeofday(tval,	null);	
}	//	end	of	scope	
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Resources 
Scoped memory 

TimeVal	tval	=	null;	
		
try	(Scope	scope	=	lib.createScope())	{	
		tval	=	scope.create(TimeVal.class);	
		int	res	=	time.gettimeofday(tval,	null);	
}	//	end	of	scope	
	
//	Access	attemps	out	of	scope	
long	tv_sec		=	tval.tv_sec$get();		//	liveness	checks!	
long	tv_usec	=	tval.tv_usec$get();	//	liveness	checks!	
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“Civilizer” 
Better JNI 

interface	Timeval	{	
		void	gettimeofday(Timeval,	Timezone)	throws	ErrNo;	
}	
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“Civilizer” 
Better JNI 

interface	Timeval	{	
		void	gettimeofday(Timeval,	Timezone)	throws	ErrNo;	
}	
	
	
try	(Timeval	tval	=	lib.create(Timeval.class))	{	
		time.gettimeofday(tval,	null);	//	throws	exception	
		long	tv_sec		=	tval.tv_sec$get();	
		long	tv_usec	=	tval.tv_usec$get();	
}	
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Variadic Function 
Better JNI 

int printf(const char *format, ...) 
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jextract + Civilizer 
Better JNI 

//	int printf(const char *format, ...) 
	
interface	Stdio	{	
…	
				//	“Raw”	
				int	printf(Pointer<Byte>	format,	byte[]	args);	
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jextract + Civilizer 
Better JNI 

//	int printf(const char *format, ...) 
	
interface	Stdio	{	
…	
				//	“Raw”	
				int	printf(Pointer<Byte>	format,	byte[]	args);	
	
				//	“Civilized”	
				void	printf(String	format,	Object…	args);	
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Optimize checks 

void run(MyClass obj) { 
    obj.nativeFunc1(); // checks & state trans. 
    obj.nativeFunc2(); // checks & state trans. 
    obj.nativeFunc3(); // checks & state trans. 
} 

7
4



75 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

Optimize checks 

Java

Java Heap
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Optimize checks 

void run(MyClass obj) { 
    obj.f1(); // NPE 
    obj.f2(); // NPE 
    obj.f3(); // NPE 
} 
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Optimize checks 

void run(MyClass obj) { 
    if (obj == null) jump throwNPE_stub; 
    call MyClass::f(obj); 
    call MyClass::f1(obj); 
    call MyClass::f3(obj);  
} 
 

7
8
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Optimize checks 

void run(MyClass obj) { 
    obj.nativeFunc1(); // checks & state trans. 
    obj.nativeFunc2(); // checks & state trans. 
    obj.nativeFunc3(); // checks & state trans. 
} 

7
9
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Optimize checks 

void run(MyClass obj) { 
    if (!performChecks())  jump failed_stub; 
    call transJavaToNative(); 
    MyClass::nativeFunc1(env, obj); 
    MyClass::nativeFunc2(env, obj);  
    MyClass::nativeFunc3(env, obj);  
    call transNativeToJava(); 
} 

8
0
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Better JNI 

§ Native access between the JVM and native APIs  
–  Native code via FFIs 
–  Native data via safely-wrapped access functions  
–  Tooling for header file API extraction and API metadata storage  

§ Wrapper interposition mechanisms, based on JVM interfaces  
–  add (or delete) wrappers for specialized safety invariants  

§ Basic bindings for selected native APIs  

Easier, Safer, Faster! 

8
3



84 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

Native Data 
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Native Data 

§ LAPACK 
1.  invoke library code 
2.  pass data into library 
3.  access data from Java 

B = A2 
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JNI 
@since 1.1 
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NIO 
@since 1.4 
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NIO 

§   Provides access to the low-level I/O operations 
–  Buffers for bulk memory operations 

§  on-heap and off-heap 
–  Character set encoders and decoders 
–  Channels, a new primitive I/O abstraction 
–  File interface 

§  supports locks and memory mapping of files 
–  Multiplexed, non-blocking I/O 

“New I/O” 



89 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

java.nio.Buffer 

§  java.nio.ByteBuffer / CharBuffer / … 
–  MappedByteBuffer extends ByteBuffer 

§  memory-mapped region of a file 
–  DirectByteBuffer extends MappedByteBuffer 

§  malloc’ed native memory 
–  HeapByteBuffer 

§  backed by byte[] 
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java.nio.DirectByteBuffer 

ByteBuffer	dbb	=	ByteBuffer.allocateDirect(size);	
while	(dbb.hasRemaining())	{	
		dbb.putInt(…);	//	init	
}	
LAPACK.square(dbb.address(),	size);	//	invoke	
dbb.rewind();	//	reset	position	
while	(dbb.hasRemaining())	{	
		int	i	=	dbb.getInt();	//	read	result	
}	
	

Usage 



91 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

java.nio.DirectByteBuffer 

ByteBuffer	dbb	=	ByteBuffer.allocateDirect(size);	
while	(dbb.hasRemaining())	{	
		dbb.putInt(…);	//	init	
}	
LAPACK.square(dbb.address(),	size);	//	invoke	
dbb.rewind();	//	reset	position	
while	(dbb.hasRemaining())	{	
		int	i	=	dbb.getInt();	//	read	result	
}	
	

Usage 



92 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

java.nio.DirectByteBuffer 

ByteBuffer	dbb	=	ByteBuffer.allocateDirect(size);	
while	(dbb.hasRemaining())	{	
		dbb.putInt(…);	//	init	
}	
LAPACK.square(dbb.address(),	size);	//	invoke	
dbb.rewind();	//	reset	position	
while	(dbb.hasRemaining())	{	
		int	i	=	dbb.getInt();	//	read	result	
}	
	

Usage 



93 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

java.nio.DirectByteBuffer 

ByteBuffer	dbb	=	ByteBuffer.allocateDirect(size);	
while	(dbb.hasRemaining())	{	
		dbb.putInt(…);	//	init	
}	
LAPACK.square(dbb.address(),	size);	//	invoke	
dbb.rewind();	//	reset	position	
while	(dbb.hasRemaining())	{	
		int	i	=	dbb.getInt();	//	read	result	
}	
	

Usage 



94 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

java.nio.DirectByteBuffer 

ByteBuffer	dbb	=	ByteBuffer.allocateDirect(size);	
while	(dbb.hasRemaining())	{	
		dbb.putInt(…);	//	init	
}	
LAPACK.square(dbb.address(),	size);	//	invoke	
dbb.rewind();	//	reset	position	
while	(dbb.hasRemaining())	{	
		int	i	=	dbb.getInt();	//	read	result	
}	
	

Usage 
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java.nio.DirectByteBuffer 

ByteBuffer	dbb	=	ByteBuffer.allocateDirect(size);	
while	(dbb.hasRemaining())	{	
		dbb.putInt(…);	//	init	
}	
LAPACK.square(dbb);	//	invoke	
while	(dbb.hasRemaining())	{	
		int	i	=	dbb.getInt();	//	read	result	
}	
	

Usage 
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java.nio.Buffer 

§ < 2GiB 
–  ByteBuffer.allocateDirect(int size) 
–  ByteBuffer.allocate(int size) 
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java.nio.Buffer 

§ < 2GiB 
–  ByteBuffer.allocateDirect(int size) 

§ Stateful 
–  Buffer.position 
–  not thread-safe 
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java.nio.Buffer 

§ < 2GiB 
–  ByteBuffer.allocateDirect(int size) 

§ Stateful 
–  Buffer.position 
–  not thread-safe 

§ Resource deallocation 
–  GC-based (Cleaner) memory management 
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java.nio.Buffer 

§ < 2GiB 
–  ByteBuffer.allocateDirect(int size) 

§ Stateful 
–  Buffer.position 
–  not thread-safe 

§ Resource deallocation 
–  GC-based (Cleaner) memory management 

§ Zeroing 
–  on initialization 
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java.nio.Buffer 

§ < 2GiB 
–  ByteBuffer.allocateDirect(int size) 

§ Stateful 
–  Buffer.position 
–  not thread-safe 

§ Resource deallocation 
–  GC-based (Cleaner) memory management 

§ Zeroing 
–  on initialization 

§ Bounds checking 
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sun.misc.Unsafe 
Anti-JNI 
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sun.misc.Unsafe 

Use case Example methods  

Concurrency primitives  compareAndSwap*  

Serialization allocateInstance 

Efficient memory management,  
layout, and access 

allocateMemory/freeMemory  
get*/put* 

Interoperate across the JVM 
boundary  get*/put* 

… … 
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sun.misc.Unsafe 

§ Unsafe.get*/put* 
–  getInt(Object base, long offset) 
–  putInt(Object base, long offset, int value); 
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sun.misc.Unsafe 

§ Unsafe.get*/put* 
–  getInt(Object base, long offset) 
–  putInt(Object base, long offset, int value); 

§ double-register addressing mode 
–  getInt(o, offset) == o + offset 
–  getInt(null, address) == address 
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sun.misc.Unsafe 

§ Unsafe.get*/put* 
–  getInt(Object base, long offset) 
–  putInt(Object base, long offset, int value); 

§ double-register addressing mode 
–  getInt(o, offset) == o + offset 
–  getInt(null, address) == address 

§  long allocateMemory(long size)        void freeMemory(long address) 
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java.nio.DirectByteBuffer 

long	buf	=	UNSAFE.allocateMemory(size);	
	
LAPACK.square(buf,	size);	
	
for	(long	l	=	0;	l	<	size;	l	=+	4)	{	
		int	i	=	UNSAFE.getInt(null,	buf	+	l);	
}	
	

Usage 
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UNSAFE.putInt(new Object(), 0L, 0) 
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UNSAFE.putInt(null, 0L, 0) 
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 Object UNSAFE.getObject(long address) 
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long UNSAFE.getAddress(long address) 
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Unsafe =?= Fast 
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Unsafe != Fast 
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Unsafe != Fast 

public native Object allocateInstance(Class<?> cls) throws …; 
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Unsafe != Fast 

long[]	base	=	new	long[…];	
int	idx	=	…;	

Array index vs Raw offset 
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Unsafe != Fast 

long[]	base	=	new	long[…];	
int	idx	=	…;	
	
//	“Naïve”	version	
long	value	=	base[idx];	

Array index vs Raw offset 
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Unsafe != Fast 

long[]	base	=	new	long[…];	
int	idx	=	…;	
	
//	“Naïve”	version	
long	value	=	base[idx];	
	
//	Highly	optimized	
long	offset	=	(((long)	idx)	<<	SCALE	+	OFFSET)	
long	value	=	Unsafe.getLong(base,	offset);	

Array index vs Raw offset 
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Unsafe != Fast 

long[]	base	=	new	long[…];	
int	idx	=	…;	
	
//	“Naïve”	version	
long	value	=	base[idx];	
	
//	Highly	optimized	
long	offset	=	(((long)	idx)	<<	SCALE	+	OFFSET)	
long	value	=	Unsafe.getLong(base,	offset);	

Array index vs Raw offset: 32-bit platform 
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Unsafe != Fast 

§ Missing optimizations 
–  JDK-8078629: “VM should constant fold Unsafe.get*() loads from final fields” 
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- How many of you have used the Unsafe API? 
… 

John Rose, JVM Architect, Oracle 
JVM Language Summit 2014 

 

1
1
9
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- How many of you have used the Unsafe API? 
… 

- A lot of you. Gosh. I'm sorry. 

John Rose, JVM Architect, Oracle 
JVM Language Summit 2014 

 

1
2
0
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sun.misc.Unsafe 

Use case Example methods  

Concurrency primitives  compareAndSwap*  

Serialization allocateInstance  
(ReflectionFactory.newConstructorForSerialization) 

Efficient memory management,  
layout, and access 

allocateMemory/freeMemory  
get*/put* 

Interoperate across the JVM 
boundary  

 

get*/put* 
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sun.misc.Unsafe 

Use case Replacement 

Concurrency primitives  JEP 193 Variable Handles 

Serialization Reboot JEP 187 Serialization 
Improvements  

Efficient memory management,  
layout, and access 

Project Panama, Project Valhalla,  
 Arrays 2.0, Better GC 

Interoperate across the JVM 
boundary  

 

Project Panama, 
JEP 191 Foreign Function Interface 



124 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

java.lang.invoke. 
 

VarHandle 
@since 9 

 
JEP 193: Variable Handles 
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VarHandle 

MethodHandles.Lookup:	
VarHandle	byteBufferViewVarHandle(Class<?>	viewArrayClass,	
																																		boolean	bigEndian)	{…}	
	

“Produces a VarHandle giving access to elements of a ByteBuffer 
viewed as if it were an array of elements of a different primitive 
component type to that of byte, such as int[] or long[].” 
	

ByteBuffer View 
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VarHandle 

VarHandle	VH	=		
				MethodHandles.byteBufferViewVarHandle(	
								int[].class,		
								ByteOrder.nativeOrder()	==	ByteOrder.BIG_ENDIAN);	
	
ByteBuffer dbb = ByteBuffer.allocateDirect(size);	
 
int v = (int)VH.get(dbb, idx);	

ByteBuffer View 
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java.nio.ByteBuffer vs VarHandle View 

DirectByteBuffer VarHandle 
Size < 2 GiB < 2 GiB 
State Yes No 
Resource management GC-based No (delegates to DBB) 
Zeroing Yes No (delegates to DBB) 
Atomics/Fences/… No Yes 
Bound checks Yes (optimized) Yes (optimized) 
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Optimized Bounds Checks 

//	null	check	+	(index	u<	array.length)	
return	array[index];		
	

int[] 
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Optimized Bounds Checks 

//	bounds	and	null	check		
if	(index	<	0	||	index	>=	array.length)	
		throw	new	…();	
	
long	offset	=	BASE	+	(((long)	index)	<<	2);	
return	UNSAFE.getInt(array,	offset);	

	
	

int[]: Unsafe access 
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Optimized Bounds Checks 

//	bounds	(u<)	and	null	check		
index	=	Objects.checkIndex(index,	array.length);		
	
	
long	offset	=	BASE	+	(((long)	index)	<<	2);	
return	UNSAFE.getInt(array,	offset);	

@HotSpotIntrinsicCandidate	
public	static	int	checkIndex(int	index,	int	length,	…);	
	

	
	

int[]: Unsafe access 
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Summary 

§ Existing 
–  Java Native Interface (JNI) & JNR library 
–  java.nio.DirectByteBuffer 
–  sun.misc.Unsafe (get*/set*) 

§  JDK9 
–  j.l.i.VarHandle views over ByteBuffers 

§ Future 
–  Project Panama 
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http://openjdk.java.net	

Project Panama 
Foreign Function Interface 
Data Layout Control 
Vector API 
Arrays 2.0 
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http://openjdk.java.net	

Project Panama panama-dev@openjdk.java.net	
http://hg.openjdk.java.net/panama/panama	



134 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

Safe Harbor Statement 
 

The preceding is intended to outline our general product direction. It is 
intended for information purposes only, and may not be incorporated into 
any contract. It is not a commitment to deliver any material, code, or 
functionality, and should not be relied upon in making purchasing 
decisions. The development, release, and timing of any features or 
functionality described for Oracle’s products remains at the sole 
discretion of Oracle. 
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Graphic Section Divider 


