


Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Polyglot	on	the	JVM	with	Graal	

Vojin	Jovanovic	
VM	Research	Group,	Oracle	Labs	
	
Github:	@vjovanov	
TwiMer:	@vojjov	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	informaSon	purposes	only,	and	may	not	be	incorporated	into	any	
contract.		It	is	not	a	commitment	to	deliver	any	material,	code,	or	funcSonality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	The	development,	release,	and	
Sming	of	any	features	or	funcSonality	described	in	connecSon	with	any	Oracle	product	or	
service	remains	at	the	sole	discreSon	of	Oracle.		Any	views	expressed	in	this	presentaSon	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.	

3	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 4	CC	license	by	hMp://githut.info	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 5	

1

10

100

1000

Language

3	

Lo
w

er
 is

 b
et

te
r

The	World	is	Polyglot:	What	About	Performance?	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

“Write	Your	Own	Language”	

6	

Prototype	a	new	language	

Parser	and	language	work	to	build	syntax	tree	(AST),		
AST	Interpreter	

Write	a	“real”	VM	

In	C/C++,	sSll	using	AST	interpreter,	spend	a	lot	of	Sme		
implemenSng	runSme	system,	GC,	…	

People	start	using	it	

Define	a	bytecode	format	and	write	bytecode	interpreter	

People	complain	about	performance	

Write	a	JIT	compiler,	improve	the	garbage	collector	

Performance	is	sSll	bad	

Prototype	a	new	language	in	Java	

Parser	and	language	work	to	build	syntax	tree	(AST)	
Execute	using	AST	interpreter	

People	start	using	it	

And	it	is	already	fast	
And	it	integrates	with	other	languages	
And	it	has	tool	support,	e.g.,	a	debugger	

Current situation How it should be 



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 7	

VM	 VM	 VM	 VM	

Impl	 Impl	 Impl	 Impl	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 8	

VM	 VM	 VM	 VM	

Impl	 Impl	 Impl	 Impl	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 9	

VM	 VM	 VM	 VM	

Impl	 Impl	 Impl	 Impl	

Costly	and	Cumbersome	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 10	

CommunicaSon	with	NaSve	Code	is	Expensive	

VM	

Impl	
NaSve	Project	Costly	and	Cumbersome	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary		

•  Fast	languages	are	hard	to	implement	

•  Interoperability	between	the	languages	is	cumbersome	and	costly	

• Barrier	between	languages	and	naSve	projects	

11	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 12	

Graal:	One	Compiler	for	Managed	Languages	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 13	

Graal	VM	Architecture	

Java	HotSpot	RunSme	

JVM	Compiler	Interface	(JVMCI)	JEP	243	

Graal	Compiler	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Key	Features	of	Graal	
• WriMen	in	Java		
– Eases	development	and	maintenance		

• Modular	architecture	
– Configurable	compiler	phases	
– Compiler-VM	separaSon:	snippets,	provider	interfaces	

•  Designed	for	speculaSve	opSmizaSons	and	deopSmizaSon	
– Metadata	for	deopSmizaSon	is	propagated	through	all	opSmizaSon	phases	

•  Designed	for	exact	garbage	collecSon	
– Read/write	barriers,	pointer	maps	for	garbage	collector	

•  Aggressive	high-level	opSmizaSons	
– Example:	parSal	escape	analysis	

14	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 15	

Example	OpSmizaSon:	ParSal	Escape	Analysis	(1)	
public static Car getCached(int hp, String name) { !

Car car = new Car(hp, name, null); !
Car cacheEntry = null; !
for (int i = 0; i < cache.length; i++) { !

if (car.hp == cache[i].hp && !
  car.name == cache[i].name) { !
cacheEntry = cache[i]; !
break; !

} !
} !
if (cacheEntry != null) { !

return cacheEntry; !
} else { !

!
addToCache(car); !
return car; !

} !
} !



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 16	

Example	OpSmizaSon:	ParSal	Escape	Analysis	(2)	
public static Car getCached(int hp, String name) {!
!

Car cacheEntry = null; !
for (int i = 0; i < cache.length; i++) { !

if (hp == cache[i].hp && !
  name == cache[i].name) { !
cacheEntry = cache[i]; !
break; !

} !
} !
if (cacheEntry != null) { !

return cacheEntry; !
} else { !

Car car = new Car(hp, name, null); !
addToCache(car); !
return car; !

} !
} !

§  new Car(...)	escapes	at:	
—  addToCache(car); !

—  return car; !

§  Might	be	a	very	unlikely	path	

§  No	allocaSon	in	frequent	path	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 17	

Graal	VM	Architecture	

Java	HotSpot	RunSme	

JVM	Compiler	Interface	(JVMCI)	JEP	243	

Graal	Compiler	

Truffle	Framework	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Speculate	and	OpSmize	…	

18	

U

U U

U

U I

I I

G

G I

I I

G

G

Node Specialization
for Profiling Feedback

AST Interpreter
Specialized Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

I

I I

G

G I

I I

G

G

Transfer back 
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Specialization to 
Update Profiling Feedback

Recompilation using
Partial Evaluation

…	and	Transfer	to	Interpreter	and	ReopSmize!	

19	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

How	effecSve	is	this	approach?	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Looking	at	this	loop	here	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 25	

Graal	VM	Architecture	

Java	HotSpot	RunSme	

JVM	Compiler	Interface	(JVMCI)	JEP	243	

Graal	Compiler	

Truffle	Framework	

Sulong	(LLVM)	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Sulong	
•  Enable	LLVM	bitcode	as	just	another	”Truffle	language”	
• Why?	
–  ParScular	interest	in	running	C,	C++,	and	Fortran	programs.	
–  High-performance	naSve	extensions	for	managed	languages.	
–  Low	overhead	of	security-related	instrumentaSons	such	as	bounds	checks.	
–  Apply	dynamic	opSmizaSon	techniques	to	staSc	context.	

26	

define i32 @add(i32 %x, i32 %y) #0 { !
  %1 = alloca i32, align 4 !
  %2 = alloca i32, align 4 !
  store i32 %x, i32* %1, align 4 !
  store i32 %y, i32* %2, align 4 !
  %3 = load i32* %1, align 4 !
  %4 = load i32* %2, align 4 !
  %5 = add nsw i32 %3, %4!
  ret i32 %5!
}	

FUNCTION add(x, y) !
  INTEGER :: add !
  INTEGER :: a !
  INTEGER :: b !
  add = a + b !
  RETURN!
END FUNCTION	

LLVM	frontend	
Graal	VM	
via	Truffle	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Performance:	Graal	VM	

27	

1.02	 1.2	

4.1	
4.5	

0.85	 0.9	

0	

1	

2	

3	

4	

5	

Java	 Scala	 Ruby	 R	 NaSve	 JavaScript	

Speedup,	higher	is	be?er	

Performance	relaBve	to:	
HotSpot/Server,	HotSpot/Server	running	JRuby,	GNU	R,	LLVM	AOT	compiled,	V8	

Graal	
Best	Specialized	CompeSSon	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Completeness	

28	

Ruby	language	
JRuby	passes	94%	

96%	 Ruby	core	library	
JRuby	passes	95%	

99%	 ECMA	Script	2015	
Missing	Unicode	Regexes	

91%	 ECMA	Script	2016	
V8	(5.4.500.6)	passes	91.1%	

99%	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Graal	VM:	Going	Polyglot	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

How	important	are	the	libraries	you	use?	

30	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 31	

VM	 VM	 VM	 VM	

Impl	 Impl	 Impl	 Impl	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 32	

VM	

Impl	 Impl	 Impl	 Impl	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 33	

VM	

Impl	 Impl	 Impl	 Impl	

Zero	Overhead	Interoperability	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

How	we	do	polyglot	in	GraalVM?	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 36	

Memory	Managed	
Code	on	the	JVM	

NaBve	Code	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Embedding	a	VM	

37	

VM	
Impl	 Impl	 Impl	 Impl	

Any	NaSve	Project	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	Substrate	VM	is	…	

an	embeddable	VM	

for,	and	wriMen	in,	a	subset	of	Java	

opSmized	to	execute	Truffle	languages	

ahead-of-Bme	compiled	using	Graal	

integraSng	with	naBve	development	tools.	

…	

38	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Substrate	VM:	ExecuSon	Model	

39	

Ahead-of-Time  
Compilation 

Points-To Analysis 

Substrate	VM	

Truffle	Language	

JDK	

Reachable	methods,		
fields,	and	classes	

Machine	Code	

IniSal	Heap	

All	Java	classes	from		
Truffle	language		

(or	any	applicaSon),		
JDK,	and	Substrate	VM	

ApplicaSon	running		
without		dependency	on	JDK		
and	without	Java	class	loading	

DWARF	Info	

ELF	/	MachO	Binary	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Substrate	VM	Building	Blocks	
•  Reduced	runSme	system,	all	wriMen	in	Java	
–  Stack	walking,	excepSon	handling,	garbage	collector,	deopSmizaSon	
–  Graal	for	ahead-of-Sme	compilaSon	and	dynamic	compilaSon	

•  Points-to	analysis	
–  Closed-world	assumpSon:	no	dynamic	class	loading,	no	reflecSon	
–  Using	Graal	for	bytecode	parsing	
–  Fixed-point	iteraSon:	propagate	type	states	through	methods	

•  SystemJava	for	integraSon	with	C	code	
–  Machine-word	sized	value,	represented	as	Java	interface,	but	unboxed	by	compiler	
–  Import	of	C	funcSons	and	C	structs	to	Java	

•  SubsStuSons	for	JDK	methods	that	use	unsupported	features	
–  JNI	code	replaced	with	SystemJava	code	that	directly	calls	to	C	library	

40	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SystemJava	

41	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SystemJava	

•  Legacy	C	code	integraSon	
–  Need	a	convenient	way	to	access	preexisSng	C	funcSons	and	structures	
–  Example:	libc,	legacy	code	

•  Legacy	Java	code	integraSon	
–  Leverage	preexisSng	Java	libraries	
–  "Patch"	violaSons	of	our	reduced	Java	rules	
–  Example:	JDK	class	library	

•  Call	Java	from	C	code	
–  Entry	points	into	our	Java	code	

New	
System	Java		

Code	

PreexisSng		
C	Code	

PreexisSng	
Java	Code	

Call	Java	from	C	

Legacy	C	Code		
IntegraSon	

Legacy	Java	Code		
IntegraSon	

42	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SystemJava	vs.	JNI	
•  Java	NaSve	Interface	(JNI)	
– Write	custom	C	code	to	integrate	exisSng	C	code	with	Java	
– C	code	knows	about	Java	types	
– Java	objects	passed	to	C	code	using	handles	

•  SystemJava	
– Write	custom	Java	code	to	integrate	exisSng	C	code	with	Java	
– Java	code	knows	about	C	types	
– No	need	to	pass	Java	objects	to	C	code	

43	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Word	type	for	low-level	memory	access	
•  Requirements	
–  Support	raw	memory	access	and	pointer	arithmeSc	
–  No	extension	of	the	Java	programming	language	
–  Pointer	type	modeled	as	a	class	to	prevent	mixing	with,	e.g.,	long	
–  Transparent	bit	width	(32	bit	or	64	bit)	in	code	using	it	

•  Base	interface	Word	
–  Looks	like	an	object	to	the	Java	IDE,	but	is	a	primiSve	value	at	run	Sme	
–  Graal		does	the	transformaSon	

•  Subclasses	for	type	safety	
–  Pointer: 	C	equivalent	void*	
–  Unsigned: 	C	equivalent	size_t	
–  Signed: 	C	equivalent	ssize_t	

44	

public	static	Unsigned	strlen(CharPointer	str)	{	
		Unsigned	n	=	Word.zero();	
		while	(str.read(n)	!=	0)	{	
				n	=	n.add(1);	
		}	
		return	n;	
}	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	AnnotaSons	to	Import	C	Elements	

#include	<time.h>	@CContext(PosixDirectives.class)	

#define	CLOCK_MONOTONIC	1	

struct	timespec	{	
		__time_t	tv_sec;	
		__syscall_slong_t	tv_nsec;	
};	

int*	pint;	

int**	ppint;	

@CConstant	static	native	int	CLOCK_MONOTONIC();	

@CPointerTo(nameOfCType="int")	interface	CIntPointer	extends	PointerBase	{	
		int	read();	
		void	write(int	value);	
}	

@CPointerTo(CIntPointer.class)	interface	CIntPointerPointer	...	

-lrt	@CLibrary("rt")	

@CStruct	interface	timespec	extends	PointerBase	{	
		@CField	long	tv_sec();	
		@CField	long	tv_nsec();	
}	

int	clock_gettime(clockid_t	__clock_id,	struct	timespec	*__tp)	@CFunction	static	native	int	clock_gettime(int	clock_id,	timespec	tp);	

45	

static	long	nanoTime()	{	
		timespec	tp	=	StackValue.get(SizeOf.get(timespec.class));	
		clock_gettime(CLOCK_MONOTONIC(),	tp);	
		return	tp.tv_sec()	*	1_000_000_000L	+	tp.tv_nsec();	
}	

ImplementaSon	of	System.nanoTime()	using	SystemJava:	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	

46	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 47	

Microbenchmark	for	Startup	and	Peak	Performance	(1)	
function	benchmark(n)	{	
			var	obj	=	{i:	0,	result:	0};	
			while	(obj.i	<=	n)	{	
						obj.result	=	obj.result	+	obj.i;	
						obj.i	=	obj.i	+	1;	
			}	
			return	obj.result;	
}	

FuncBon	benchmark	is	invoked	in	a	loop	by	harness	
(0	to	40000	iteraBons)	

n	fixed	to	50000	for	all	iteraBons	

JavaScript	VM	 Version	 Command	Line	Flags	

Google	V8	 Version	4.2.27	 [none]	

Mozilla	Spidermonkey	 Version	JavaScript-C45.0a1	 [none]	

Nashorn	JDK	8	update	60	 build	1.8.0_60-b27	 -J-Xmx256M	

Truffle	on	HotSpot	VM	 graal-js	changeset	a8947301fd1e	from	Nov	30,	2015	
graal-enterprise	changeset	f47fff503e49	from	Nov	30,	2015	

-J-Xmx256M	

Truffle	on	Substrate	VM	 substratevm	changeset	45c61d192d43	from	Dec	1,	2015	
graal-enterprise	changeset	d8ee392c83e3	from	Nov	21,	2015	

[none]	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

-10
10
30
50
70
90
110
130
150

0 2 4 6 8 10M
em

or
y	
Fo
ot
pr
in
t	[
M
By

te
]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 2 4 6 8 10

Ex
ec
ut
io
n	
Ti
m
e	
[S
ec
on

ds
]

Iterations

0
1
2
3
4
5
6
7
8
9
10

0 10000 20000 30000 40000
Iterations

0

50

100

150

200

250

0 50 100 150 200

0

0.5

1

1.5

2

2.5

0 50 100 150 200
Iterations

48	

Microbenchmark	for	Startup	and	Peak	Performance	(2)	

Background	compilaBon	

Background	compilaBon	finished	

00.10.20.30.40.50.60.70.8

0

Google	V8
Mozilla	Spidermonkey
Nashorn	JDK	8u60
Truffle	on	HotSpot	VM
Truffle	on	Substrate	VM



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Embedding	the	VM	

49	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Truffle	System	Structure	

Low-footprint VM, also 
suitable for embedding 

Common API separates 
language implementation, 
optimization system, 
and tools (debugger) 

Language agnostic 
dynamic compiler 

AST Interpreter for 
every language 

Integrate with Java 
applications 

Substrate	VM	

Graal	

JavaScript	 Ruby	 LLVM	R	

Graal	VM	

…	

Truffle	

50	

Your language 
should be here! 

Tools	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary		

•  Fast	and	easy-to-implement	languages		

•  Interoperability	between	the	languages	with	zero	overhead	

•  Embeddable	in	naSve	code	via	Substrate	VM		

51	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Open	Source	
•  github.com/graalvm/	
•  graal-core:	dynamic	compiler	technology	
•  truffle:	language	implementaSon	framework	
•  fastr:	implementaSon	of	the	R	runSme	
•  sulong:	execuSon	of	LLVM-based	languages	
•  rubytruffle:	implementaSon	of	the	Ruby	runSme	
•  simplelanguage:	example	language	for	ge{ng	started	

52	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Graal	and	Truffle	Tutorials	

53	

https://wiki.openjdk.java.net/display/Graal/Publications+and+Presentations	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Acknowledgements	

54	

Oracle	
Danilo	Ansaloni	
Stefan	Anzinger	
Cosmin	Basca	
Daniele	BoneMa	
MaMhias	Brantner	
Petr	Chalupa	
Jürgen	Christ	
Laurent	Daynès	
Gilles	Duboscq	
MarSn	Entlicher	
BasSan	Hossbach	
ChrisSan	Humer	
Mick	Jordan	
Vojin	Jovanovic	
Peter	Kessler	
David	Leopoldseder	
Kevin	Menard	
Jakub	Podlešák	
Aleksandar	Prokopec	
Tom	Rodriguez	

Oracle	(conBnued)	
Roland	Schatz	
Chris	Seaton	
Doug	Simon	
Štěpán	Šindelář	
Zbyněk	Šlajchrt	
Lukas	Stadler	
Codrut	Stancu	
Jan	Štola	
Jaroslav	Tulach	
Michael	Van	De	Vanter	
Adam	Welc	
ChrisSan	Wimmer	
ChrisSan	Wirth	
Paul	Wögerer	
Mario	Wolczko	
Andreas	Wöß	
Thomas	Würthinger	

JKU	Linz	
Prof.	Hanspeter	Mössenböck	
Benoit	Daloze	
Josef	Eisl	
Thomas	FeichSnger	
MaMhias	Grimmer	
ChrisSan	Häubl	
Josef	Haider	
ChrisSan	Huber	
Stefan	Marr	
Manuel	Rigger	
Stefan	Rumzucker	
Bernhard	Urban	
	
University	of	Edinburgh	
Christophe	Dubach	
Juan	José	Fumero	Alfonso	
Ranjeet	Singh	
Toomas	Remmelg	
	
LaBRI	
Floréal	Morandat	

University	of	California,	Irvine	
Prof.	Michael	Franz	
Gulfem	Savrun	Yeniceri	
Wei	Zhang	
	
Purdue	University	
Prof.	Jan	Vitek	
Tomas	Kalibera	
Petr	Maj	
Lei	Zhao	
	
T.	U.	Dortmund	
Prof.	Peter	Marwedel	
Helena	KoMhaus	
Ingo	Korb	
	
University	of	California,	Davis	
Prof.	Duncan	Temple	Lang	
Nicholas	Ulle	
	
University	of	Lugano,	Switzerland	
Prof.	Walter	Binder	
Sun	Haiyang	
Yudi	Zheng	

Oracle	Interns	
Brian	Belleville		
Miguel	Garcia	
Shams	Imam	
Alexey	Karyakin	
Stephen	Kell	
Andreas	Kun�	
Volker	LanSng	
Gero	Leinemann	
Julian	LeMner	
Joe	Nash	
David	Piorkowski	
Gregor	Richards	
Robert	Seilbeck	
Rifat	Shariyar	
	
Alumni	
Erik	Eckstein	
Michael	Haupt	
Christos	Kotselidis	
Hyunjin	Lee	
David	Leibs	
Chris	Thalinger	
Till	Westmann	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 55	




