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Safe	Harbor	Statement	
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	informaSon	purposes	only,	and	may	not	be	incorporated	into	any	
contract.		It	is	not	a	commitment	to	deliver	any	material,	code,	or	funcSonality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	The	development,	release,	and	
Sming	of	any	features	or	funcSonality	described	in	connecSon	with	any	Oracle	product	or	
service	remains	at	the	sole	discreSon	of	Oracle.		Any	views	expressed	in	this	presentaSon	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.	
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The	World	is	Polyglot:	What	About	Performance?	
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“Write	Your	Own	Language”	

6	

Prototype	a	new	language	

Parser	and	language	work	to	build	syntax	tree	(AST),		
AST	Interpreter	

Write	a	“real”	VM	

In	C/C++,	sSll	using	AST	interpreter,	spend	a	lot	of	Sme		
implemenSng	runSme	system,	GC,	…	

People	start	using	it	

Define	a	bytecode	format	and	write	bytecode	interpreter	

People	complain	about	performance	

Write	a	JIT	compiler,	improve	the	garbage	collector	

Performance	is	sSll	bad	

Prototype	a	new	language	in	Java	

Parser	and	language	work	to	build	syntax	tree	(AST)	
Execute	using	AST	interpreter	

People	start	using	it	

And	it	is	already	fast	
And	it	integrates	with	other	languages	
And	it	has	tool	support,	e.g.,	a	debugger	

Current situation How it should be 
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Costly	and	Cumbersome	
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CommunicaSon	with	NaSve	Code	is	Expensive	

VM	

Impl	
NaSve	Project	Costly	and	Cumbersome	
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Summary		

•  Fast	languages	are	hard	to	implement	

•  Interoperability	between	the	languages	is	cumbersome	and	costly	

• Barrier	between	languages	and	naSve	projects	

11	
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Graal:	One	Compiler	for	Managed	Languages	
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Graal	VM	Architecture	

Java	HotSpot	RunSme	

JVM	Compiler	Interface	(JVMCI)	JEP	243	

Graal	Compiler	
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Key	Features	of	Graal	
• WriMen	in	Java		
– Eases	development	and	maintenance		

• Modular	architecture	
– Configurable	compiler	phases	
– Compiler-VM	separaSon:	snippets,	provider	interfaces	

•  Designed	for	speculaSve	opSmizaSons	and	deopSmizaSon	
– Metadata	for	deopSmizaSon	is	propagated	through	all	opSmizaSon	phases	

•  Designed	for	exact	garbage	collecSon	
– Read/write	barriers,	pointer	maps	for	garbage	collector	

•  Aggressive	high-level	opSmizaSons	
– Example:	parSal	escape	analysis	

14	
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Example	OpSmizaSon:	ParSal	Escape	Analysis	(1)	
public static Car getCached(int hp, String name) { !

Car car = new Car(hp, name, null); !
Car cacheEntry = null; !
for (int i = 0; i < cache.length; i++) { !

if (car.hp == cache[i].hp && !
  car.name == cache[i].name) { !
cacheEntry = cache[i]; !
break; !

} !
} !
if (cacheEntry != null) { !

return cacheEntry; !
} else { !

!
addToCache(car); !
return car; !

} !
} !
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Example	OpSmizaSon:	ParSal	Escape	Analysis	(2)	
public static Car getCached(int hp, String name) {!
!

Car cacheEntry = null; !
for (int i = 0; i < cache.length; i++) { !

if (hp == cache[i].hp && !
  name == cache[i].name) { !
cacheEntry = cache[i]; !
break; !

} !
} !
if (cacheEntry != null) { !

return cacheEntry; !
} else { !

Car car = new Car(hp, name, null); !
addToCache(car); !
return car; !

} !
} !

§  new Car(...)	escapes	at:	
—  addToCache(car); !

—  return car; !

§  Might	be	a	very	unlikely	path	

§  No	allocaSon	in	frequent	path	
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Graal	VM	Architecture	

Java	HotSpot	RunSme	

JVM	Compiler	Interface	(JVMCI)	JEP	243	

Graal	Compiler	

Truffle	Framework	
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Speculate	and	OpSmize	…	

18	
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Recompilation using
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…	and	Transfer	to	Interpreter	and	ReopSmize!	
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How	effecSve	is	this	approach?	



Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Looking	at	this	loop	here	
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Graal	VM	Architecture	

Java	HotSpot	RunSme	

JVM	Compiler	Interface	(JVMCI)	JEP	243	

Graal	Compiler	

Truffle	Framework	

Sulong	(LLVM)	
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Sulong	
•  Enable	LLVM	bitcode	as	just	another	”Truffle	language”	
• Why?	
–  ParScular	interest	in	running	C,	C++,	and	Fortran	programs.	
–  High-performance	naSve	extensions	for	managed	languages.	
–  Low	overhead	of	security-related	instrumentaSons	such	as	bounds	checks.	
–  Apply	dynamic	opSmizaSon	techniques	to	staSc	context.	

26	

define i32 @add(i32 %x, i32 %y) #0 { !
  %1 = alloca i32, align 4 !
  %2 = alloca i32, align 4 !
  store i32 %x, i32* %1, align 4 !
  store i32 %y, i32* %2, align 4 !
  %3 = load i32* %1, align 4 !
  %4 = load i32* %2, align 4 !
  %5 = add nsw i32 %3, %4!
  ret i32 %5!
}	

FUNCTION add(x, y) !
  INTEGER :: add !
  INTEGER :: a !
  INTEGER :: b !
  add = a + b !
  RETURN!
END FUNCTION	

LLVM	frontend	
Graal	VM	
via	Truffle	
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Performance:	Graal	VM	

27	
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Completeness	

28	

Ruby	language	
JRuby	passes	94%	

96%	 Ruby	core	library	
JRuby	passes	95%	

99%	 ECMA	Script	2015	
Missing	Unicode	Regexes	

91%	 ECMA	Script	2016	
V8	(5.4.500.6)	passes	91.1%	

99%	
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Graal	VM:	Going	Polyglot	
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How	important	are	the	libraries	you	use?	

30	
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VM	
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Zero	Overhead	Interoperability	
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How	we	do	polyglot	in	GraalVM?	
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Memory	Managed	
Code	on	the	JVM	

NaBve	Code	
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Embedding	a	VM	

37	
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The	Substrate	VM	is	…	

an	embeddable	VM	

for,	and	wriMen	in,	a	subset	of	Java	

opSmized	to	execute	Truffle	languages	

ahead-of-Bme	compiled	using	Graal	

integraSng	with	naBve	development	tools.	

…	

38	
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Substrate	VM:	ExecuSon	Model	

39	
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Substrate	VM	Building	Blocks	
•  Reduced	runSme	system,	all	wriMen	in	Java	
–  Stack	walking,	excepSon	handling,	garbage	collector,	deopSmizaSon	
–  Graal	for	ahead-of-Sme	compilaSon	and	dynamic	compilaSon	

•  Points-to	analysis	
–  Closed-world	assumpSon:	no	dynamic	class	loading,	no	reflecSon	
–  Using	Graal	for	bytecode	parsing	
–  Fixed-point	iteraSon:	propagate	type	states	through	methods	

•  SystemJava	for	integraSon	with	C	code	
–  Machine-word	sized	value,	represented	as	Java	interface,	but	unboxed	by	compiler	
–  Import	of	C	funcSons	and	C	structs	to	Java	

•  SubsStuSons	for	JDK	methods	that	use	unsupported	features	
–  JNI	code	replaced	with	SystemJava	code	that	directly	calls	to	C	library	

40	
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SystemJava	

41	
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SystemJava	

•  Legacy	C	code	integraSon	
–  Need	a	convenient	way	to	access	preexisSng	C	funcSons	and	structures	
–  Example:	libc,	legacy	code	

•  Legacy	Java	code	integraSon	
–  Leverage	preexisSng	Java	libraries	
–  "Patch"	violaSons	of	our	reduced	Java	rules	
–  Example:	JDK	class	library	

•  Call	Java	from	C	code	
–  Entry	points	into	our	Java	code	

New	
System	Java		

Code	

PreexisSng		
C	Code	

PreexisSng	
Java	Code	

Call	Java	from	C	

Legacy	C	Code		
IntegraSon	

Legacy	Java	Code		
IntegraSon	

42	
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SystemJava	vs.	JNI	
•  Java	NaSve	Interface	(JNI)	
– Write	custom	C	code	to	integrate	exisSng	C	code	with	Java	
– C	code	knows	about	Java	types	
– Java	objects	passed	to	C	code	using	handles	

•  SystemJava	
– Write	custom	Java	code	to	integrate	exisSng	C	code	with	Java	
– Java	code	knows	about	C	types	
– No	need	to	pass	Java	objects	to	C	code	

43	
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Word	type	for	low-level	memory	access	
•  Requirements	
–  Support	raw	memory	access	and	pointer	arithmeSc	
–  No	extension	of	the	Java	programming	language	
–  Pointer	type	modeled	as	a	class	to	prevent	mixing	with,	e.g.,	long	
–  Transparent	bit	width	(32	bit	or	64	bit)	in	code	using	it	

•  Base	interface	Word	
–  Looks	like	an	object	to	the	Java	IDE,	but	is	a	primiSve	value	at	run	Sme	
–  Graal		does	the	transformaSon	

•  Subclasses	for	type	safety	
–  Pointer: 	C	equivalent	void*	
–  Unsigned: 	C	equivalent	size_t	
–  Signed: 	C	equivalent	ssize_t	

44	

public	static	Unsigned	strlen(CharPointer	str)	{	
		Unsigned	n	=	Word.zero();	
		while	(str.read(n)	!=	0)	{	
				n	=	n.add(1);	
		}	
		return	n;	
}	
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Java	AnnotaSons	to	Import	C	Elements	

#include	<time.h>	@CContext(PosixDirectives.class)	

#define	CLOCK_MONOTONIC	1	

struct	timespec	{	
		__time_t	tv_sec;	
		__syscall_slong_t	tv_nsec;	
};	

int*	pint;	

int**	ppint;	

@CConstant	static	native	int	CLOCK_MONOTONIC();	

@CPointerTo(nameOfCType="int")	interface	CIntPointer	extends	PointerBase	{	
		int	read();	
		void	write(int	value);	
}	

@CPointerTo(CIntPointer.class)	interface	CIntPointerPointer	...	

-lrt	@CLibrary("rt")	

@CStruct	interface	timespec	extends	PointerBase	{	
		@CField	long	tv_sec();	
		@CField	long	tv_nsec();	
}	

int	clock_gettime(clockid_t	__clock_id,	struct	timespec	*__tp)	@CFunction	static	native	int	clock_gettime(int	clock_id,	timespec	tp);	

45	

static	long	nanoTime()	{	
		timespec	tp	=	StackValue.get(SizeOf.get(timespec.class));	
		clock_gettime(CLOCK_MONOTONIC(),	tp);	
		return	tp.tv_sec()	*	1_000_000_000L	+	tp.tv_nsec();	
}	

ImplementaSon	of	System.nanoTime()	using	SystemJava:	
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Results	
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Microbenchmark	for	Startup	and	Peak	Performance	(1)	
function	benchmark(n)	{	
			var	obj	=	{i:	0,	result:	0};	
			while	(obj.i	<=	n)	{	
						obj.result	=	obj.result	+	obj.i;	
						obj.i	=	obj.i	+	1;	
			}	
			return	obj.result;	
}	

FuncBon	benchmark	is	invoked	in	a	loop	by	harness	
(0	to	40000	iteraBons)	

n	fixed	to	50000	for	all	iteraBons	

JavaScript	VM	 Version	 Command	Line	Flags	

Google	V8	 Version	4.2.27	 [none]	

Mozilla	Spidermonkey	 Version	JavaScript-C45.0a1	 [none]	

Nashorn	JDK	8	update	60	 build	1.8.0_60-b27	 -J-Xmx256M	

Truffle	on	HotSpot	VM	 graal-js	changeset	a8947301fd1e	from	Nov	30,	2015	
graal-enterprise	changeset	f47fff503e49	from	Nov	30,	2015	

-J-Xmx256M	

Truffle	on	Substrate	VM	 substratevm	changeset	45c61d192d43	from	Dec	1,	2015	
graal-enterprise	changeset	d8ee392c83e3	from	Nov	21,	2015	

[none]	
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Microbenchmark	for	Startup	and	Peak	Performance	(2)	

Background	compilaBon	

Background	compilaBon	finished	

00.10.20.30.40.50.60.70.8

0

Google	V8
Mozilla	Spidermonkey
Nashorn	JDK	8u60
Truffle	on	HotSpot	VM
Truffle	on	Substrate	VM
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Embedding	the	VM	

49	
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Truffle	System	Structure	

Low-footprint VM, also 
suitable for embedding 

Common API separates 
language implementation, 
optimization system, 
and tools (debugger) 

Language agnostic 
dynamic compiler 

AST Interpreter for 
every language 

Integrate with Java 
applications 

Substrate	VM	

Graal	

JavaScript	 Ruby	 LLVM	R	

Graal	VM	

…	

Truffle	
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Your language 
should be here! 

Tools	
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Summary		

•  Fast	and	easy-to-implement	languages		

•  Interoperability	between	the	languages	with	zero	overhead	

•  Embeddable	in	naSve	code	via	Substrate	VM		

51	
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Open	Source	
•  github.com/graalvm/	
•  graal-core:	dynamic	compiler	technology	
•  truffle:	language	implementaSon	framework	
•  fastr:	implementaSon	of	the	R	runSme	
•  sulong:	execuSon	of	LLVM-based	languages	
•  rubytruffle:	implementaSon	of	the	Ruby	runSme	
•  simplelanguage:	example	language	for	ge{ng	started	

52	
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Graal	and	Truffle	Tutorials	

53	

https://wiki.openjdk.java.net/display/Graal/Publications+and+Presentations	
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