
Dmitry	Bugaychenko	

How to calculate CTR for 100M+
objects and not to die…	

OK.ru – the myths:

OK.ru – the reality:

OK.ru – the size
�  200	000	000	users,	12	000	000	000	social	links,	10	000	
000	communi9es…	

�  8000	servers	around	the	glob	
�  1	Tb/s	of	traffic	
�  6	TB	of	data	for	analysis	daily	
�  …	
�  9	billions	news	feed	records	daily	

What gets into your News Feed?	
�  Content	your	friends	create	(photos,	videos,	posts)	
�  Ac9ons	your	friends	make	(likes,	re-shares,	comments)	
�  Content	your	communi9es	create	
�  …	
�  2000+	candidates	to	show	instantly	for	an	average	user	

Lets add some hype on “algorithmic feed” J	

Object:	
features	x	in	X	 Model	 News feed	

Interesting
part is here!	

Some features	
�  Object	age	
�  Number	of	likes	
�  Rela9ons	between	user	and	author	
�  …	
�  Click	Through	Rate	(CTR):	

�  times	item	was	clicked	/	9mes	item	was	shown	

CTR is very simple and common, but	
�  800	000+	of	impressions	per	second	
�  7	000	000+	candidates	to	evaluate	per	second	
�  100	000	000+	objects	shown	or	reacted	daily	
�  1	333	000	000+	objects	shown	or	reacted	monthly	

Typical storage at OK.ru	

Read-update-write to “typical storage”?	
Cool, but… What we really want is	

�  High	frequency	of	
updates	

�  High	conten9on	
�  10x	more	reads	than	
writes	

�  Scale	differently	for	read	
and	write	

�  Eliminate	conten9on	
�  Process	different	data	
with	different	algorithms	

�  24/7	reliable	connec9on	
to	users	

The solution: Distributed aggregator	
YARN

+ Samza	

Kafka	

SHM + Single-
node Cassandra	

Fanout queue? What’s that?	

Apache Kafka	

Apache Kafka broker failure	

Apache Samza	

Apache Samza: Checkpointing	

Apache Samza: State	

Apache Kafka: Log Compaction	

Finally introducing…	

Streaming CTR counter!	

Did it work out of the box?	

Did it work out of the box? No… L	
Managed to fix/replace	 Still suffering	

� Mul9-volume	startup	
�  Lost	watermarks	
�  Combined	cleanup	policy	
�  Rack-awareness	
�  Custom	in-memory	store	
� Monitoring!	

�  Slow	controlled	shutdown	
�  Spontaneous	date	erasure	
under	load	

�  Hanging	tasks	
�  Can	not	read	history	from	
a	broken	disk	

Monitoring	
Kafka	 Samza	

�  Broker	in	cluster	
�  All	replicas	on	broker	are	
in	sync	

�  Disk	errors	

�  Task	is	running	
�  Task	is	receiving	messages	
�  Task	offsets	are	up-to-
date	

�  Index	is	receiving	output	
of	the	task	

Streaming Index: The Bridge between YARN and
production	

�  Fetches	CTR	values	(and	many	more)	from	Ka`a	stream	
�  Stores	indexed	data	in	SHM	cache	
�  Flushes	updates	to	local	Cassandra	
�  Servers	read	requests	from	BL	clients	

Streaming Index in numbers	
�  100	000+	writes	per	node	per	second	
�  400	000+	reads	per	node	per	second	
�  700	000	000	objects	in	cache	per	node		
�  3	par99ons	
�  6	replicas	for	each	par99on	

Streaming index v1	

Why it didn’t worked	
�  Cassandra	where	too	damn	slow:	

� Huge	IO	for	commit	logs	
� Huge	GC	pauses	(100+	ms	for	young	gen)	
� Huge	safepoint	pauses	
�  Full	GC	at	the	end	

What have we done to fix it?	
�  Limited	CTR	commit	intervals	from	Samza	
�  Disable	commit	log	for	verbose	topics	
�  Added	rate	limiter	for	flusher	
�  Added	“skip	dirty”	probability	on	write	
�  Added	“skip	read	storage”	probability	on	read	
�  Cassandra	load	reduced	to	3333	w/s	and		1000	r/s	
�  Data	availability	decreased	from	97%	to	96%	

Streaming index v2	

Client side: the wrong way	
/**	
	*	Given	set	of	objects	and	features	to	extract	fetches	them	from	the	indexes	
	*	
	*	@param	objects		Objects	to	fetch	data	for.	
	*	@param	features	Features	to	fetch.	
	*	@return	Map	from	the	object	ids	to	object	features.	
	*/	
@RemoteMethod(split	=	true,	reduceStrategy	=	MapReduceFullResultsStrategy.class)	
IDistributedDataWrapper<Map<ObjectId,	Map<String,	Object>>>	getFeatures(
								@Par99onSource	ObjectId[]	objects,	Set<String>	features);	

What are the problems?	
�  Same	features	for	all	objects	
� Merging	hash-maps	on	clients	
�  Hash-lookups	for	extrac9ng	data	
�  Server-side	deserializa9on,	followed	by	serializa9on	and	
client	deserializa9on	

Client side: a better way	

A bigger picture	

Is it worth doing?	

0	 5	 10	 15	 20	 25	 30	 35	

Direct	likes	

Viral	likes	

Scroll	below	20-th	feed	

Group	joins	

Session	time	

Increase	%	

An incomplete list of streaming processing tools	

Open-source Proprietary	

�  Samza	
�  Storm	
�  Spark	Streaming	
�  Ka`a	Streams	
�  Flink	
�  …	

�  Amazon	Kinesis	
�  IBM	InfoSphere	Streams	
�  Azure	Stream	Analy9cs	
�  Oracle	Stream	Analy9cs	
�  TIBCO	StreamBase	
�  …	

Thank you for your attention!

		?	

