
Spring	RabbitMQ

Martin	Toshev



Who	am	I

Software	consultant	(CoffeeCupConsulting)

BG	JUG	board	member	(http://jug.bg)

OpenJDK and	Oracle	RDBMS	enthusiast

Twitter:	@martin_fmi

2



3



Work	in	progress	…	

4



Agenda

• Messaging	Basics

• RabbitMQ Overview

• Spring	RabbitMQ

5



Messaging

• Messaging	provides	a	mechanism	for	loosely-coupled	
integration	of	systems

• The	central	unit	of	processing	in	a	message	is	a	message	
which	typically	contains	a	body and	a	header

6



Use	cases
• Log	aggregation	between	systems

• Event	propagation	between	systems

• Offloading	long-running	tasks	to	worker	nodes

• many	others	…

7



Messaging	protocols

• Messaging	solutions	implement	different	protocols	for	
transferring	of	messages	such	as	AMQP,	XMPP,	MQTT,	
STOMP	and	others

• The	variety	of	protocols	imply	vendor	lock-in

8



Messaging	protocols	comparison
AMQP MQTT XMPP STOMP

goal replacement	of	proprietary
protocols

messaging	for	resource-
constrained	devices

instant	messaging,
adopted	for	wider	use

Message-oriented	
middleware

format binary binary XML-based text-based

API divided into	classes	
(>	40	methods	in	RabbitMQ)

simple	(5	basic	operations	with	
2-3	packet	types	for	each)

different	XML	items	
with	multiple	types

~	10	basic	
commands

reliability publisher/subscriber	
acknowledgements,	
transactions

acknowledgements Acknowledgments	and	
resumptions	(XEP-198)

Subscriber
acknowledgements
and transactions

security SASL,	TLS/SSL no	built-in	TLS/SSL,
header authentication

SASL, TLS/SSL depending on	
message	broker

extensibility extension	points none extensible depending on	
message	broker

9



Messaging	brokers
• A	variety	of	messaging	brokers	can	be	a	choice	for	

applications	…

10



Common	characteristics
• secure	message	transfer,	authentication	and	

authorization	of	messaging	endpoints

• message	routing	and	persistence

• broker	subscriptions

11



RabbitMQ
• An	open	source	message	broker	written	in	Erlang

• Implements	the	AMQP	Protocol	(Advanced	Message	
Queueing	Protocol)

• Has	a	pluggable	architecture	and	provides	extension	for	
other	protocols	such	as	HTTP,	STOMP	and	MQTT

12



RabbitMQ users

• JP	Morgan	(financial	operations)
• Nasa	(nebula	computing)
• Google	(event	processing)
• Soundcloud (dashboard	updates)
• Nokia	(real-time	traffic	maps)

13



AMQP
• AMQP	is	a	binary	protocol	that	aims	to	standardize	

middleware	communication

• Derives	its	origins	from	the	financial	industry

• Defines	multiple	connection	channels	inside	a	single	TCP	
connection

14



AMQP	characteristics
• The	AMQP	protocol	defines:

– exchanges – the	message	broker	endpoints	that	receive	messages
– queues – the	message	broker	endpoints	that	store	messages	from	exchanges	

and	are	used	by	subscribers	for	retrieval	of	messages
– bindings – rules	that	bind	exchanges	and	queues

• The	AMQP	protocol	is	programmable	– which	means	that	
the	above	entities	can	be	created/modified/deleted	by	
applications

15



Message	handling
• Each	message	can	be	published	with	a	routing	key

• Each	binding	between	an	exchange	and	a	queue	has	a	
binding	key

• Routing	of	messages	is	determined	based	on	matching	
between	the	routing	and	binding	keys

16



Message	routing
• Different	types	of	messaging	patterns	are	implemented	

by	means	of	different	types	of	exchanges

• RabbitMQ provides	the	following	types	of	exchanges:
– direct/default
– fanout

– topic
– headers

17



Default	exchange

Publisher

Subscriber

Subscriber

Subscriber
Publisher

chat

log

general

error

warning

exchange=“”
key=“general”
payload=“XYZ”

(AMQP	
default)

(AMQP	default) is	a	system	exchange

default	exchange:	suitable	for	point-to-point	
communication	between	endpoints

18



Direct	exchange

Publisher

Subscriber

Subscriber

Subscriber
Publisher

chat

log

general

error

warning

b_general

exchange=“chat”
key=“b_general”
payload=“XYZ”

(AMQP	
default)

chat	is	defined	as	a	direct	exchange	upon	creation

direct	exchange:	suitable	for	point-to-point	
communication	between	endpoints

19



Fanout exchange

Publisher

Subscriber

Subscriber

Subscriber
Publisher

chat

log

general

error

warning

exchange=“log”
key=“”

payload=“XYZ”

(AMQP	
default)

log	is	defined	as	a	fanout exchange	upon	creation

fanout exchange:	suitable	for	broadcast	type	
of	communication	between	endpoints

20



Topic	exchange

Publisher

Subscriber

Subscriber

Subscriber
Publisher

chat

log

general

error

warn.server

exchange=“log”
key=“warning.#”
payload=“XYZ”

(AMQP	
default)

log	is	defined	as	a	topic	exchange	upon	creation

warn.client
warning.server

warning.client

topic	exchange:	suitable	for	multicast	type	of	
communication	between	endpoints

21



RabbitMQ clustering

• Default	clustering	mechanism	provides	scalability	in	
terms	of	queues	rather	than	high	availability

• Mirrored	queues	are	an	extension	to	the	default	
clustering	mechanism	that	can	be	used	to	establish	high	
availability	at	the	broker	level

22



RabbitMQ Overview
(demo)

23



Spring	RabbitMQ

• The	Spring	Framework	provides	support	for	RabbitMQ
by	means	of:
– The	Spring	AMQP	framework
– The	Spring	Integration	framework
– The	Spring	XD	framework

24



Spring	AMQP

• Provides	RabbitMQ utilities	such	as:

– the RabbitAdmin class	for	automatically	declaring	queues,	exchanges	and	
bindings

– Listener	containers	for	asynchronous	processing	of	inbound	messages

– the RabbitTemplate class	for	sending	and	receiving	messages

25



Spring	AMQP	usage

• Utilities	of	the	Spring	AMQP	framework	can	be	used	
either	directly	in	Java	or	preconfigured	in	the	Spring	
configuration

26



RabbitAdmin
(plain	Java)

CachingConnectionFactory factory = new 
CachingConnectionFactory("localhost");

Queue queue = new Queue("sample-queue");
TopicExchange exchange = 

new TopicExchange("sample-topic-exchange");
RabbitAdmin admin = new RabbitAdmin(factory);
admin.declareQueue(queue);
admin.declareExchange(exchange);
admin.declareBinding(BindingBuilder.bind(queue).to(exchange)

.with("sample-key"));
factory.destroy();

27



Container	listener	
(plain	Java)

CachingConnectionFactory factory = 
new CachingConnectionFactory(

"localhost");
SimpleMessageListenerContainer container = 

new SimpleMessageListenerContainer(factory);
Object listener = new Object() {

public void handleMessage(String message) { … }};
MessageListenerAdapter adapter = new 

MessageListenerAdapter(listener);
container.setMessageListener(adapter);
container.setQueueNames("sample-queue");
container.start();

28



RabbitTemplate
(plain	Java)

CachingConnectionFactory factory = 
new CachingConnectionFactory("localhost");

RabbitTemplate template = 
new RabbitTemplate(factory);

template.convertAndSend("", "sample-queue",
"sample-queue test message!");

29



Spring-based	configuration

• All	of	the	above	examples	can	be	configured	using	Spring	
configuration

• Cleaner	and	decouples	RabbitMQ configuration	for	the	
business	logic

30



RabbitTemplate
(Spring	configuration)

<rabbit:connection-factory
id="connectionFactory" 
host="localhost" />

<rabbit:template id="amqpTemplate" 
connection-factory="connectionFactory" 
exchange="" 
routing-key="sample-queue-spring"/>

31



Container	listener	
(Spring	configuration)

<rabbit:listener-container
connection-factory="connectionFactory">
<rabbit:listener ref="springListener" 

method="receiveMessage"
queue-names="sample-queue-spring" />

</rabbit:listener-container>

<bean id="springListener"
class="com.jokerconf.rabbitmq.spring.ListenerSpringExample" />

32



Container	listener	
(Spring	configuration)

public class ListenerSpringExample {
public void receiveMessage(String message) {

System.out.println("Message received: " +
message);

}
}

33



Container	listener	
(Spring	annotations)

public class ListenerSpringExample {
@RabbitListener(queues = "sample-queue-spring")
public void receiveMessage(String message) {

System.out.println("Message received: " +
message);

}
}

34



RabbitAdmin
(Spring	configuration)

<rabbit:admin id="amqpAdmin" 
connection-factory="connectionFactory" />

35



Spring	Boot

• If	you	don’t	want	to	use	xml-based	configuration	you	can	
use	Spring	Boot	…

36



Spring	Boot
@SpringBootApplication
public class AppConfiguration {

@Bean
public ConnectionFactory connectionFactory() {

CachingConnectionFactory connectionFactory =
new CachingConnectionFactory("localhost");

return connectionFactory;
}
@Bean
public AmqpAdmin amqpAdmin() {

return new RabbitAdmin(connectionFactory());
}

}

37



Spring	Integration	AMQP

• The	Spring	Integration	Framework	provides:	

– Inbound-channel-adapter for	reading	messages	from	a	
queue

– outbound-channel-adapter for	sending	messages	to	an	
exchange

38



Spring	Integration	AMQP

• The	Spring	Integration	Framework	provides:	

– Inbound-gateway for	request-reply	communication	at	the	
publisher

– outbound-gateway for	request-reply	communication	at	
the	receiver

39



Spring	Integration	AMQP	scenario

• Message	replication	without	a	RabbitMQ extension:

test-channel
test-

destination-
queue	queue

(AMQP	
default)

test-queue
queue

Inbound
channel
adapter

outbound
channel
adapter

Spring	Integration	instance RabbitMQ instanceRabbitMQ instance

40



Spring	Integration	AMQP	scenario
<rabbit:connection-factory

id="connectionFactory"
host="localhost" />

<channel id="test-channel" />

<rabbit:queue name="test-queue" />
<rabbit:queue name="test-destination-queue" />

<rabbit:template id="amqpTemplate" 
connection-factory="connectionFactory"
exchange="" 
routing-key="test-queue" />

41



Spring	Integration	AMQP	scenario

<amqp:inbound-channel-adapter
channel="test-channel"
queue-names="test-queue" 
connection-factory="connectionFactory" />

<amqp:outbound-channel-adapter
channel="test-channel"
exchange-name="" 
routing-key="test-destination-queue" 
amqp-template="amqpTemplate" />

42



Yet	another	scenario

milk	distributor	app

online	shop
(milk,	bread,	apples,	rabbits	…)

bread	distributor	app

apples	distributor	app

rabbits	distributor	app

customer

order	processing	system



Implementation

milk-queue

(AMQP	
default)

RabbitMQ instance
Spring	Integration	instance

44

apple-queuetest
channel

milk-adapter

bread-queue

rabbit-queue

order
producer

order
router

milk
channel

bread-adapter
break
channel

apple-adapterapple
channel

rabbit-adapterrabbit
channel



Spring	RabbitMQ
(demo)

45



Summary

• The	Spring	Framework	provides	convenient	utilities	and	
adapters	for	integrating	with	RabbitMQ

• Favor	them	over	the	RabbitMQ Java	library	in	
Spring-based	applications

46



Thank	you	!

Q&A
47

demos:	https://github.com/martinfmi/spring_rabbitmq_samples



References

48

AMQP	0.9.1	specification
https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf

AMQP	list	of	users
http://www.amqp.org/about/examples

RabbitMQ documentation
http://www.rabbitmq.com/documentation.html



References

49

Choosing	Your	Messaging	Protocol:	AMQP,	MQTT,	or	STOMP
http://blogs.vmware.com/vfabric/2013/02/choosing-your-
messaging-protocol-amqp-mqtt-or-stomp.html

Spring	AMQP	reference
http://docs.spring.io/spring-amqp/reference/html/

Spring	Integration	AMQP
http://docs.spring.io/spring-integration/reference/html/amqp.html


