

Kafka pours and Spark resolves!

Alexey Zinovyev, Java/BigData Trainer in EPAM

With IT since 2007 With Java since 2009 With Hadoop since 2012 With Spark since 2014 With EPAM since 2015

About

E-mail : Alexey_Zinovyev@epam.com

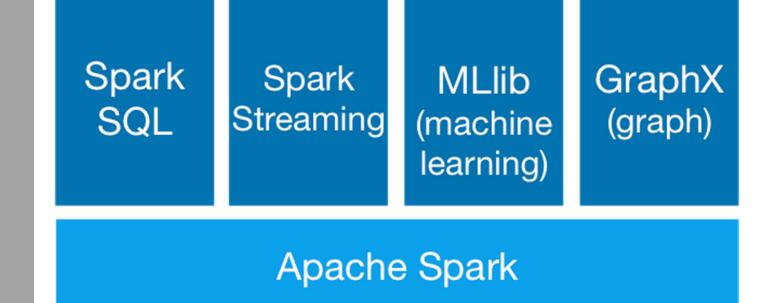
Twitter : @zaleslaw @BigDataRussia

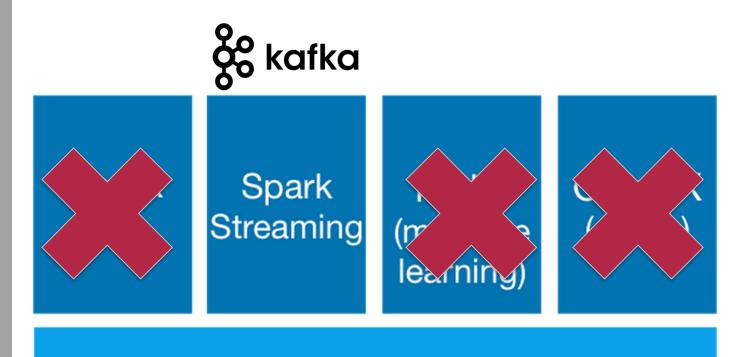
Facebook: https://www.facebook.com/zaleslaw

vk.com/big_data_russia Big Data Russia

vk.com/java_jvm Java & JVM langs

Spark Family



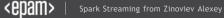


Apache Spark

Pre-summary

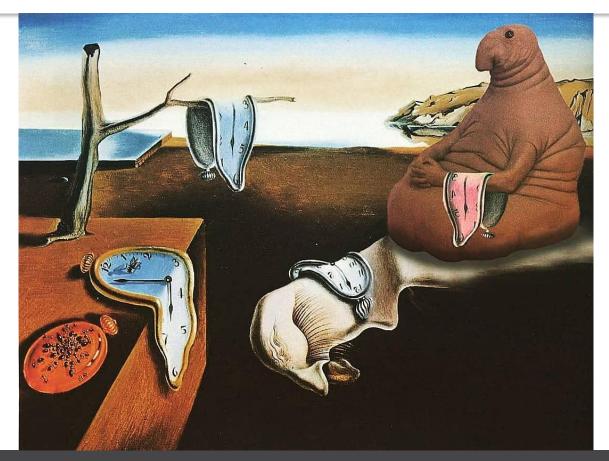
- Before RealTime
- Spark + Cassandra
- Sending messages with Kafka
- DStream Kafka Consumer
- Structured Streaming in Spark 2.1
- Kafka Writer in Spark 2.2

< REAL-TIME



Batch jobs produce reports. More and more..

But customer can wait forever (ok, 1h)



Hello, Smart Home

Ð

0

Big Data in 2017

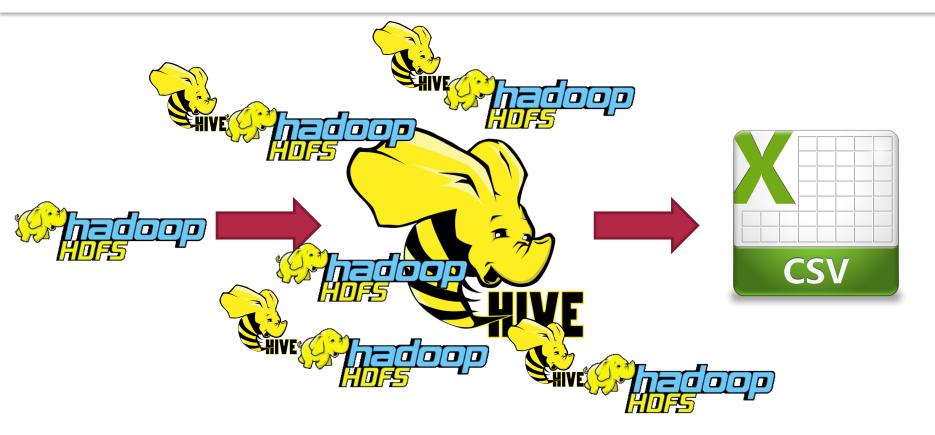
Machine Learning EVERYWHERE

...

Data Lake in promotional brochure

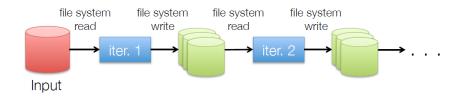
Data Lake in production

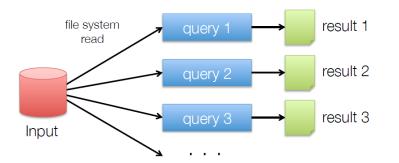
Simple Flow in Reporting/BI systems

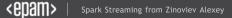


Let's use Spark. It's fast!

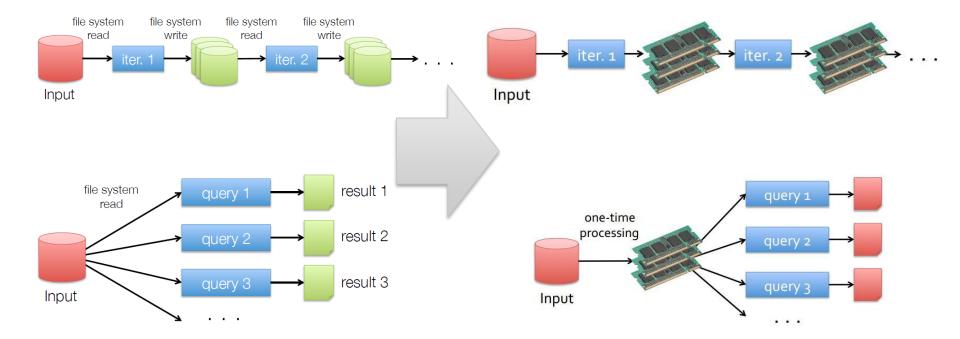
MapReduce vs Spark







MapReduce vs Spark

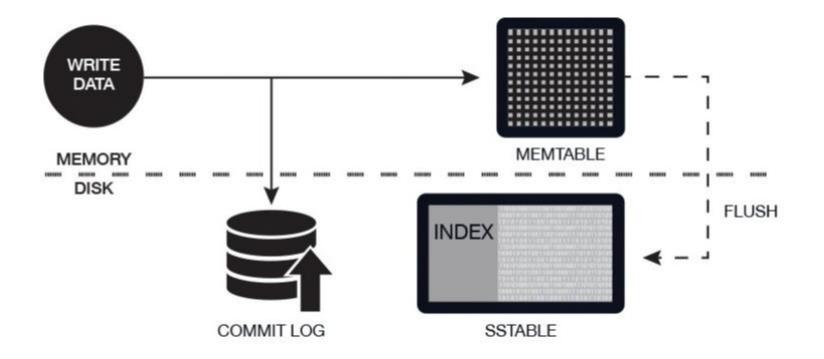


Simple Flow in Reporting/BI systems with Spark

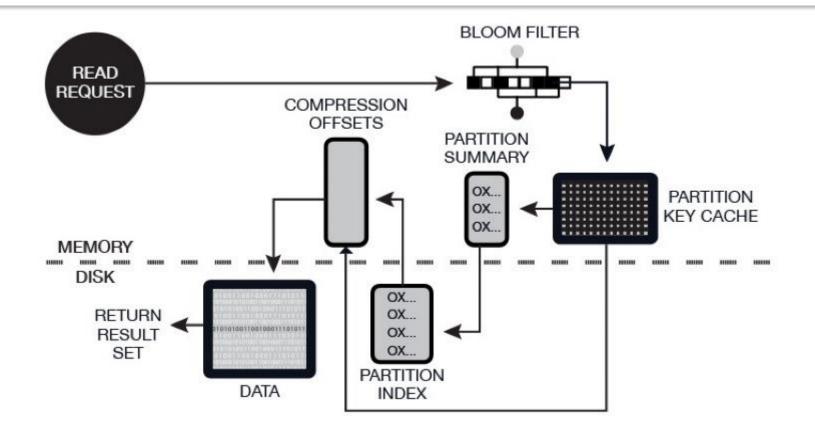
Spark handles last year logs with ease

Where can we store events?

Let's use Cassandra to store events!



Let's use Cassandra to read events!



```
CREATE KEYSPACE mySpace WITH replication = {'class':
   'SimpleStrategy', 'replication_factor': 1 };
```

USE test;

```
Cassandra
```

CREATE TABLE logs (application TEXT, time TIMESTAMP, message TEXT, PRIMARY KEY (application, time));


```
Cassandra
to Spark
```

```
val dataSet = sqlContext
```

.read

.format("org.apache.spark.sql.cassandra") .options(Map("table" -> "logs", "keyspace" -> "mySpace")) .load() dataSet .filter("message = 'Log message'") .show()

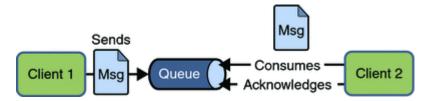
Simple Flow in Pre-Real-Time systems

Spark cluster over Cassandra Cluster

More events every second!

SENDING MESSAGES

Your Father's Messaging System



Your Father's Messaging System

Your Father's Messaging System

InitialContext ctx = new InitialContext();

```
QueueConnectionFactory f =
```

(QueueConnectionFactory)ctx.lookup("qCFactory"); QueueConnection con =

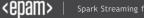
```
f.createQueueConnection();
```

```
con.start();
```


KAFKA

• messaging system

- messaging system
- distributed



- messaging system
- distributed
- supports Publish-Subscribe model

- messaging system
- distributed
- supports Publish-Subscribe model
- persists messages on disk

- messaging system
- distributed
- supports Publish-Subscribe model
- persists messages on disk
- replicates within the cluster (integrated with Zookeeper)

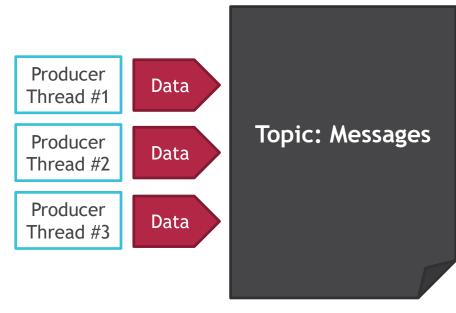
Scalability with zero down time

Zero data loss due to replication

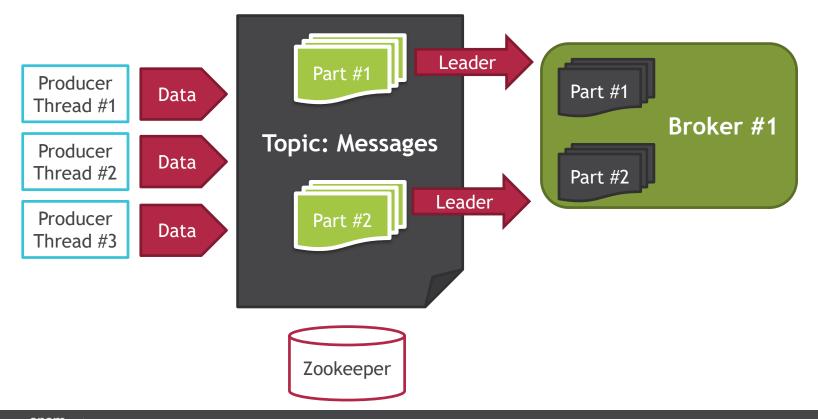
Kafka Cluster consists of ...

- brokers (leader or follower)
- topics (>= 1 partition)
- partitions
- partition offsets
- replicas of partition
- producers/consumers

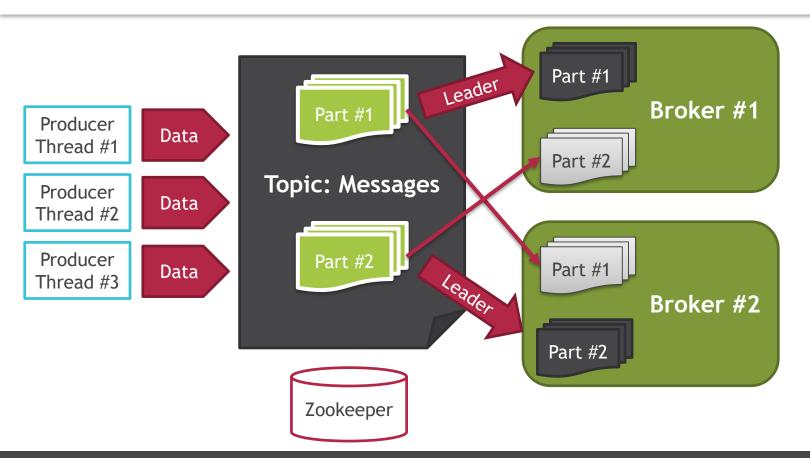
Kafka Components with topic "messages" #1



Kafka Components with topic "messages" #2



Kafka Components with topic "messages" #3

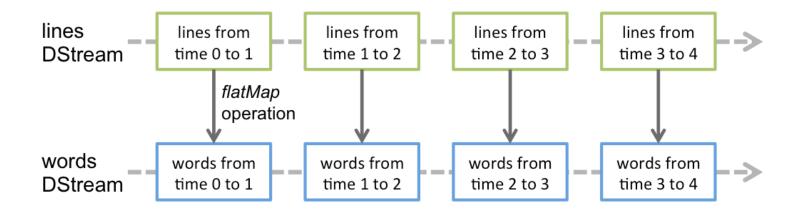


Why do we need Zookeeper?

Kafka Demo

REAL TIME WITH DSTREAMS

RDD Factory©



From socket to console with DStreams

val conf = new SparkConf().setMaster("local[2]")

.setAppName("NetworkWordCount")

val conf = new SparkConf().setMaster("local[2]")
.setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

ssc.start()

ssc.awaitTermination()

val conf = new SparkConf().setMaster("local[2]")
.setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

ssc.start()

ssc.awaitTermination()

val conf = new SparkConf().setMaster("local[2]")
.setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

ssc.start()
ssc.awaitTermination()

val conf = new SparkConf().setMaster("local[2]") .setAppName("NetworkWordCount") val ssc = new StreamingContext(conf, Seconds(1)) val lines = ssc.socketTextStream("localhost", 9999) val words = lines.flatMap(_.split(" ")) val pairs = words.map(word => (word, 1)) val wordCounts = pairs.reduceByKey(_ + _) wordCounts.print()

ssc.start()

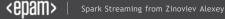
ssc.awaitTermination()

Kafka as a main entry point for Spark

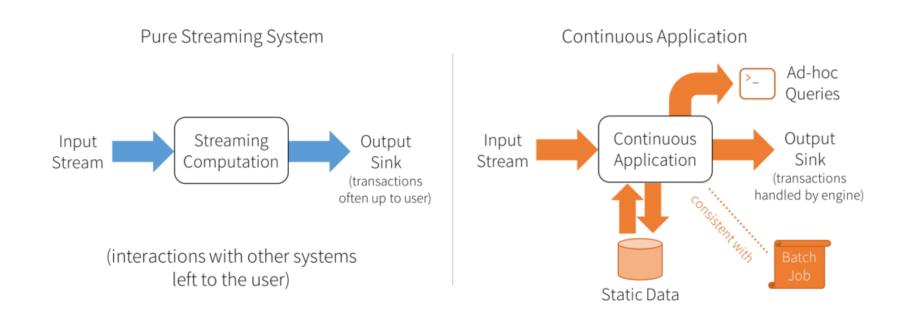
DStreams Demo

How to avoid DStreams with RDD-like API?

SPARK 2.2 DISCUSSION



Continuous Applications



Continuous Applications cases

- Updating data that will be served in real time
- Extract, transform and load (ETL)
- Creating a real-time version of an existing batch job
- Online machine learning

The main concept of Structured Streaming

You can express your streaming computation the same way you would express a batch computation on static data.

Batch Spark 2.2

// Read JSON once from S3
logsDF = spark.read.json("s3://logs")

// Transform with DataFrame API and save
logsDF.select("user", "url", "date")
 .write.parquet("s3://out")

Real Time Spark 2.2 // Read JSON continuously from S3
logsDF = spark.readStream.json("s3://logs")

// Transform with DataFrame API and save
logsDF.select("user", "url", "date")
 .writeStream.parquet("s3://out")
 .start()

```
val lines = spark.readStream
  .format("socket")
  .option("host", "localhost")
  .option("port", 9999)
  .load()
```

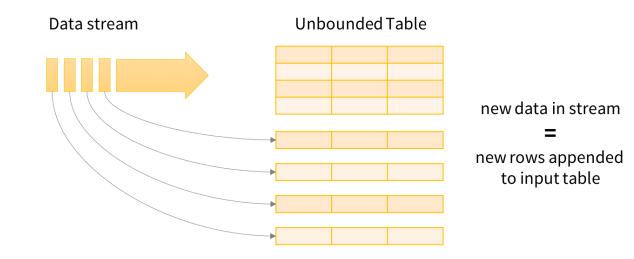
```
val lines = spark.readStream
  .format("socket")
  .option("host", "localhost")
  .option("port", 9999)
  .load()
```

val words = lines.as[String].flatMap(_.split(" "))

```
val lines = spark.readStream
  .format("socket")
  .option("host", "localhost")
  .option("port", 9999)
  .load()
val words = lines.as[String].flatMap(_.split(" "))
```

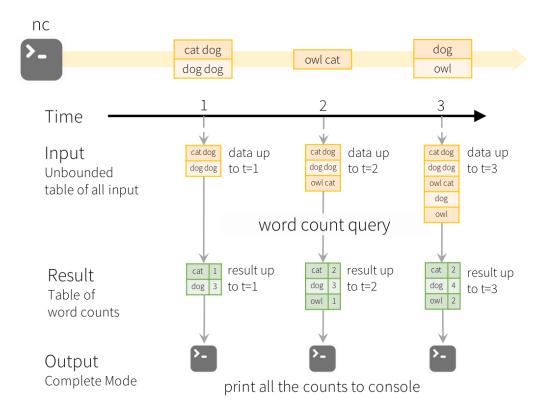
val wordCounts = words.groupBy("value").count()

Unlimited Table



Data stream as an unbounded Input Table

WordCount with Structured Streaming [Complete Mode]



Kafka -> Structured Streaming -> Console

Kafka To Console Demo

OPERATIONS

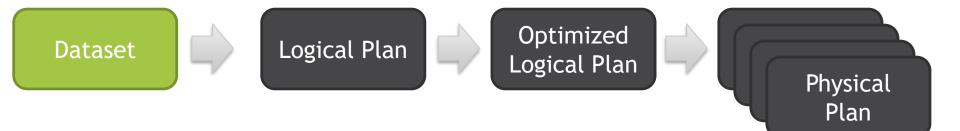
You can ...

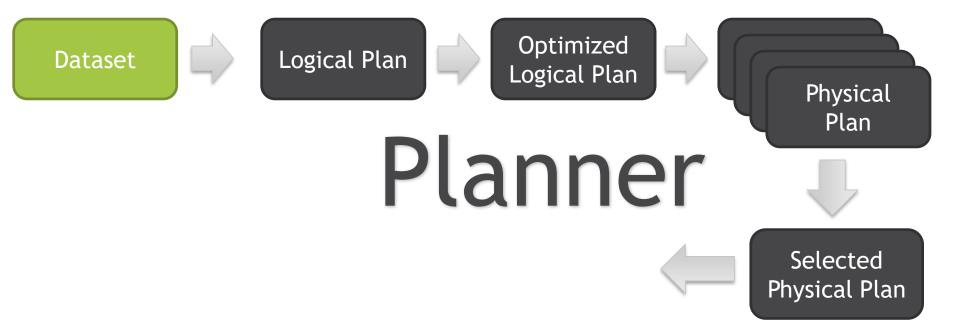
• filter

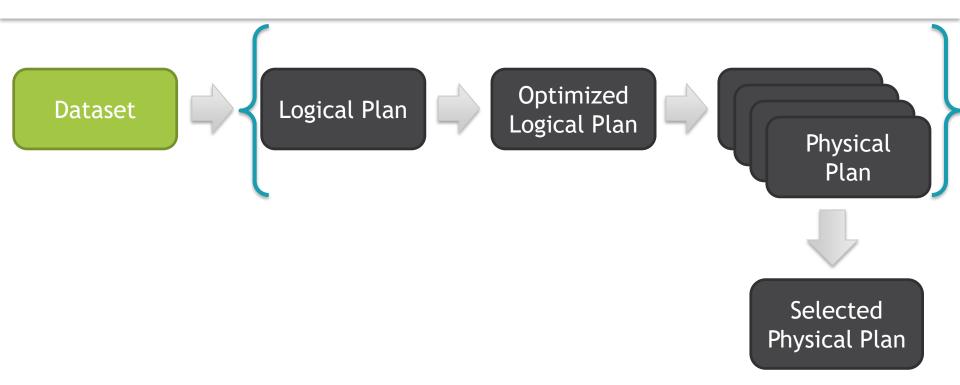
- sort
- aggregate
- join
- foreach
- explain

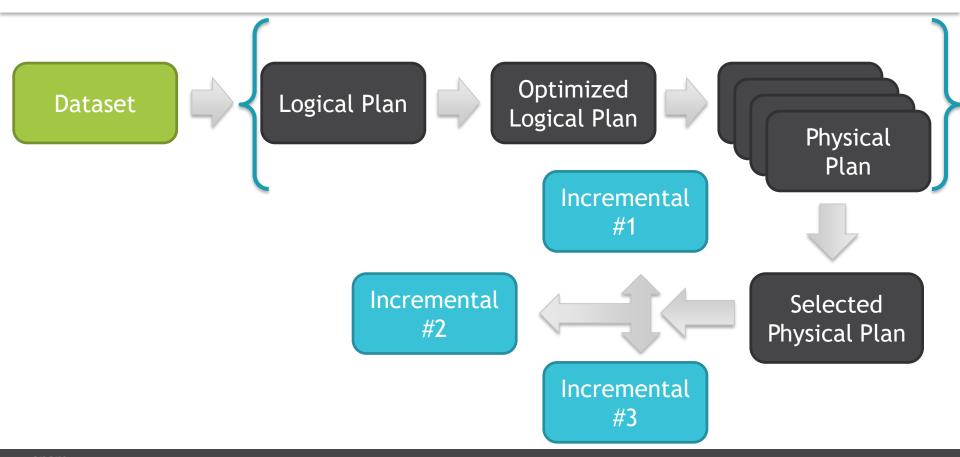
Operators Demo

How it works?





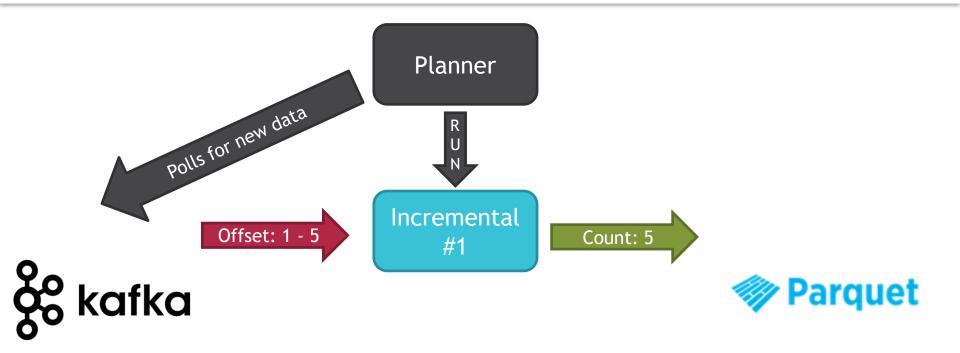




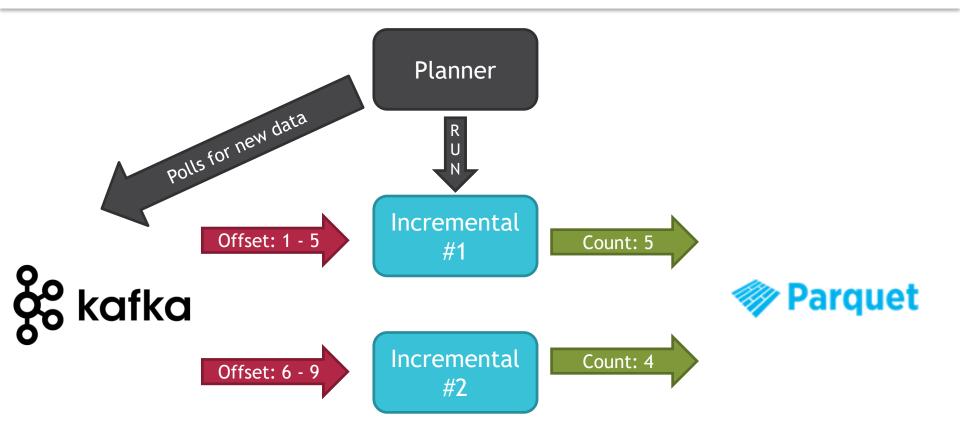
Incremental Execution: Planner polls

& kafka

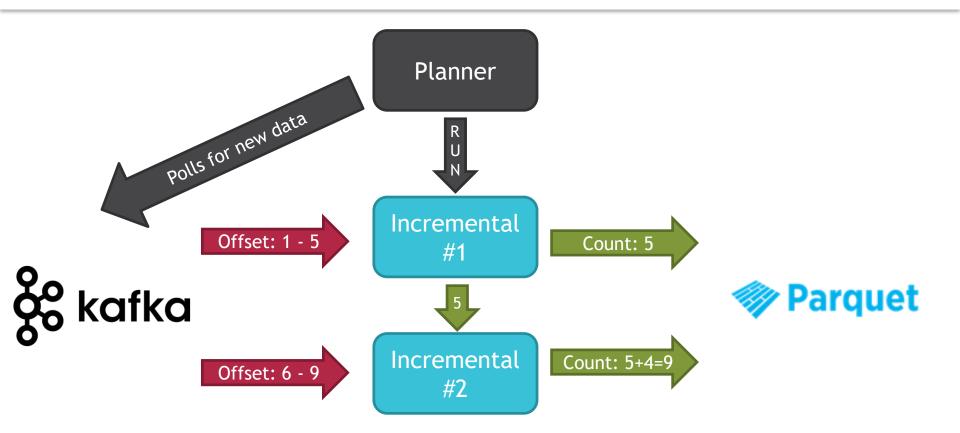
Incremental Execution: Planner runs



Incremental Execution: Planner runs #2



Aggregation with State



DataSet.explain()

```
== Physical Plan ==
Project [avg(price)#43,carat#45]
+- SortMergeJoin [color#21], [color#47]
   :- Sort [color#21 ASC], false, 0
     +- TungstenExchange hashpartitioning(color#21,200), None
         +- Project [avg(price)#43,color#21]
            +- TungstenAggregate(key=[cut#20,color#21], functions=[(avg(cast(price#25 as
bigint)),mode=Final,isDistinct=false)], output=[color#21,avg(price)#43])
               +- TungstenExchange hashpartitioning(cut#20,color#21,200), None
                  +- TungstenAggregate(key=[cut#20,color#21],
functions=[(avg(cast(price#25 as bigint)),mode=Partial,isDistinct=false)],
output=[cut#20,color#21,sum#58,count#59L])
                     +- Scan CsvRelation(----)
   +- Sort [color#47 ASC], false, 0
      +- TungstenExchange hashpartitioning(color#47,200), None
         +- ConvertToUnsafe
            +- Scan CsvRelation(----)
```

What's the difference between Complete and Append output modes?

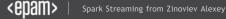
COMPLETE, APPEND & UPDATE

There are two main modes and one in future

• append (default)

There are two main modes and one in future

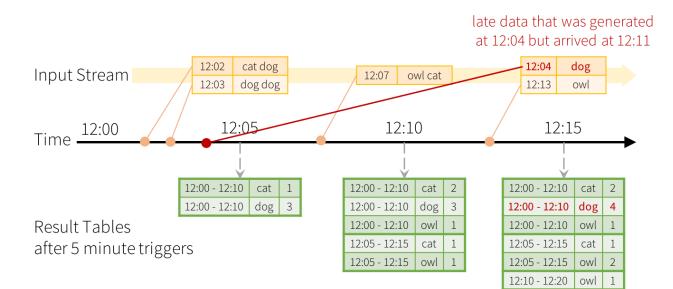
- append (default)
- complete



There are two main modes and one in future

- append (default)
- complete
- update [in dreams]

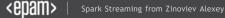
Aggregation with watermarks



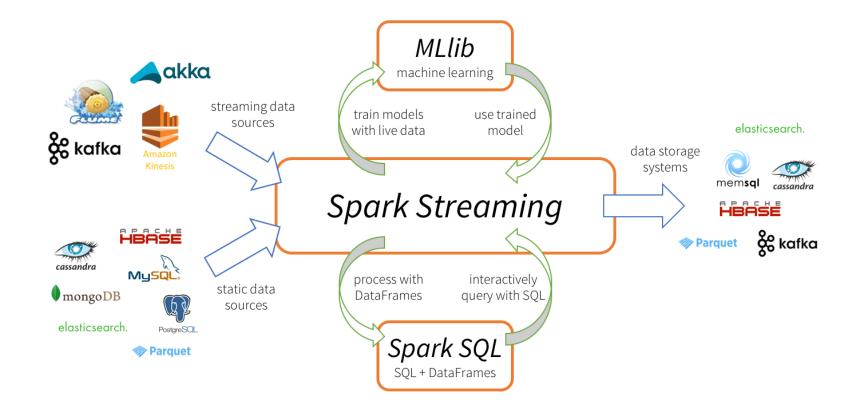
counts incremented only for window 12:00 - 12:10

Late data handling in Windowed Grouped Aggregation

SOURCES & SINKS



Spark Streaming is a brick in the Big Data Wall



Let's save to Parquet files

Let's save to Parquet files

Let's save to Parquet files

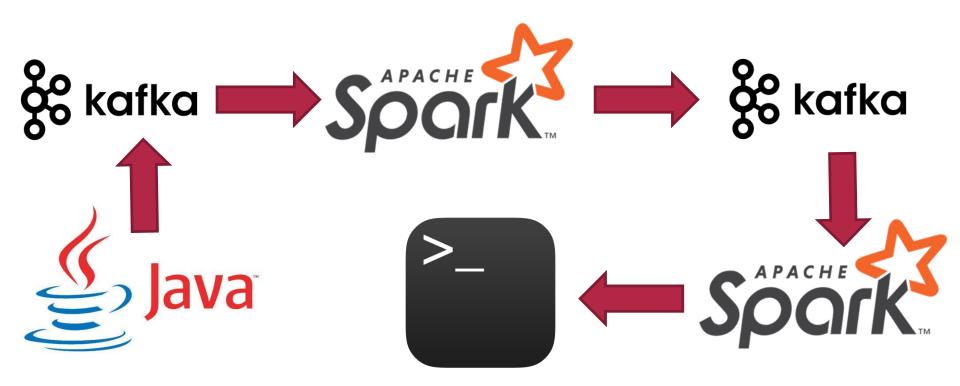
File to Memory

Can we write to Kafka?

Nightly Build

Kafka-to-Kafka

J-K-S-K-S-C



Pipeline Demo

I didn't find sink/source for XXX...

Console Foreach Sink

import org.apache.spark.sql.ForeachWriter

val customWriter = new ForeachWriter[String] {
 override def open(partitionId: Long, version: Long) = true
 override def process(value: String) = println(value)
 override def close(errorOrNull: Throwable) = {}

stream.writeStream

.queryName("ForeachOnConsole")

.foreach(customWriter)

.start

Pinch of wisdom

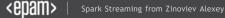
- check checkpointLocation
- don't use MemoryStream
- think about GC pauses
- be careful about nighty builds
- use .groupBy.count() instead count()
- use console sink instead .show() function

We have no ability...

- join two streams
- work with update mode
- make full outer join
- take first N rows
- sort without pre-aggregation

- Support other data sources (not only S3 + HDFS)
- Transactional updates
- Dataset is one DSL for all operations
- GraphFrames + Structured MLLib
- KafkaWriter
- TensorFrames

IN CONCLUSION



Scalable Fault-Tolerant **Real-Time** Pipeline with

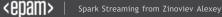
Spark & Kafka

is ready for usage

A few papers about Spark Streaming and Kafka

Introduction in Spark + Kafka

http://bit.ly/2mJjE4i



E-mail : Alexey_Zinovyev@epam.com

Twitter : @zaleslaw @BigDataRussia

Facebook: https://www.facebook.com/zaleslaw

vk.com/big_data_russia Big Data Russia

vk.com/java_jvm Java & JVM langs

Any questions?