
Kafka pours and Spark 

resolves!

Alexey Zinovyev, Java/BigData Trainer in EPAM



About

With IT since 2007

With Java since 2009

With Hadoop since 2012

With Spark since 2014

With EPAM since 2015
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Contacts

E-mail : Alexey_Zinovyev@epam.com

Twitter : @zaleslaw @BigDataRussia

Facebook: https://www.facebook.com/zaleslaw

vk.com/big_data_russia Big Data Russia

vk.com/java_jvm Java & JVM langs
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Pre-summary

• Before RealTime

• Spark + Cassandra

• Sending messages with Kafka

• DStream Kafka Consumer

• Structured Streaming in Spark 2.1

• Kafka Writer in Spark 2.2
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< REAL-TIME
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Modern Java in 2016
Big Data in 2014
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Batch jobs produce reports. More and more..
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But customer can wait forever (ok, 1h)
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Big Data in 2017
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Machine Learning EVERYWHERE
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Data Lake in promotional brochure
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Data Lake in production
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Simple Flow in Reporting/BI systems
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Let’s use Spark. It’s fast!
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MapReduce vs Spark
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MapReduce vs Spark
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Simple Flow in Reporting/BI systems with Spark
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Spark handles last year logs with ease
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Where can we store events?
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Let’s use Cassandra to store events!
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Let’s use Cassandra to read events!
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Cassandra

CREATE KEYSPACE mySpace WITH replication = {'class': 

'SimpleStrategy', 'replication_factor': 1 };

USE test; 

CREATE TABLE logs

( application TEXT,

time TIMESTAMP,

message TEXT,

PRIMARY KEY (application, time));
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Cassandra

to Spark

val dataSet = sqlContext

.read

.format("org.apache.spark.sql.cassandra")

.options(Map( "table" -> "logs", "keyspace" -> "mySpace" 

))

.load()

dataSet

.filter("message = 'Log message'")

.show()
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Simple Flow in Pre-Real-Time systems
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Spark cluster over Cassandra Cluster



28Spark Streaming from Zinoviev Alexey

More events every second!
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SENDING MESSAGES
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Your Father’s Messaging System



31Spark Streaming from Zinoviev Alexey

Your Father’s Messaging System
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Your Father’s Messaging System

InitialContext ctx = new InitialContext();

QueueConnectionFactory f = 

(QueueConnectionFactory)ctx.lookup(“qCFactory"); QueueConnection con = 

f.createQueueConnection();

con.start();
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KAFKA



34Spark Streaming from Zinoviev Alexey

Kafka

• messaging system



35Spark Streaming from Zinoviev Alexey

Kafka

• messaging system

• distributed



36Spark Streaming from Zinoviev Alexey

Kafka

• messaging system

• distributed

• supports Publish-Subscribe model



37Spark Streaming from Zinoviev Alexey

Kafka

• messaging system

• distributed

• supports Publish-Subscribe model

• persists messages on disk



38Spark Streaming from Zinoviev Alexey

Kafka

• messaging system

• distributed

• supports Publish-Subscribe model

• persists messages on disk

• replicates within the cluster (integrated with Zookeeper)
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The main benefits of Kafka

Scalability with zero down time

Zero data loss due to replication
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Kafka Cluster consists of …

• brokers (leader or follower)

• topics ( >= 1 partition)

• partitions

• partition offsets

• replicas of partition

• producers/consumers
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Kafka Components with topic “messages” #1

Producer 

Thread #1

Producer 

Thread #2

Producer 

Thread #3

Topic: Messages
Data

Data

Data

Zookeeper
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Kafka Components with topic “messages” #2

Producer 

Thread #1

Producer 

Thread #2

Producer 

Thread #3

Topic: Messages

Part #1

Part #2

Data

Data

Data

Broker #1

Zookeeper

Part #1

Part #2

Leader

Leader
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Kafka Components with topic “messages” #3

Producer 

Thread #1

Producer 

Thread #2

Producer 

Thread #3

Topic: Messages

Part #1

Part #2

Data

Data

Data

Broker #1

Broker #2

Zookeeper

Part #1

Part #1

Part #2

Part #2
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Why do we need Zookeeper?
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Kafka 

Demo
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REAL TIME WITH 

DSTREAMS
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RDD Factory
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From socket to console with DStreams
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DStream

val conf = new SparkConf().setMaster("local[2]")

.setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

ssc.start() 

ssc.awaitTermination() 
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Kafka as a main entry point for Spark
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DStreams

Demo
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How to avoid DStreams with RDD-like API?
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SPARK 2.2 DISCUSSION
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Continuous Applications
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Continuous Applications cases

• Updating data that will be served in real time

• Extract, transform and load (ETL)

• Creating a real-time version of an existing batch job

• Online machine learning
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The main concept of Structured Streaming

You can express your streaming computation the 

same way you would express a batch computation 

on static data.
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Batch

Spark 2.2

// Read JSON once from S3

logsDF = spark.read.json("s3://logs")

// Transform with DataFrame API and save

logsDF.select("user", "url", "date")

.write.parquet("s3://out")
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Real 

Time

Spark 2.2

// Read JSON continuously from S3

logsDF = spark.readStream.json("s3://logs")

// Transform with DataFrame API and save

logsDF.select("user", "url", "date")

.writeStream.parquet("s3://out")

.start()
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WordCount

from 

Socket

val lines = spark.readStream

.format("socket")

.option("host", "localhost")

.option("port", 9999)

.load()

val words = lines.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()
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WordCount

from 

Socket

val lines = spark.readStream
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WordCount

from 

Socket

val lines = spark.readStream

.format("socket")

.option("host", "localhost")

.option("port", 9999)

.load()

val words = lines.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()

Don’t forget 

to start 

Streaming
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Unlimited Table 
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WordCount with Structured Streaming [Complete Mode]
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Kafka -> Structured Streaming -> Console
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Kafka To

Console 

Demo
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OPERATIONS
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You can …

• filter

• sort

• aggregate

• join

• foreach

• explain
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Operators

Demo
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How it works?
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Deep Diving in Spark Internals

Dataset
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Deep Diving in Spark Internals

Dataset Logical Plan
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Deep Diving in Spark Internals

Dataset Logical Plan
Optimized

Logical Plan
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Deep Diving in Spark Internals

Dataset Logical Plan
Optimized

Logical Plan
Logical Plan

Logical Plan
Logical PlanPhysical 

Plan
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Deep Diving in Spark Internals

Dataset Logical Plan
Optimized

Logical Plan
Logical Plan

Logical Plan
Logical PlanPhysical 

Plan

Selected 

Physical Plan

Planner
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Deep Diving in Spark Internals

Dataset Logical Plan
Optimized

Logical Plan
Logical Plan

Logical Plan
Logical PlanPhysical 

Plan

Selected 

Physical Plan
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Deep Diving in Spark Internals

Dataset Logical Plan
Optimized

Logical Plan
Logical Plan

Logical Plan
Logical PlanPhysical 

Plan

Selected 

Physical Plan

Incremental 

#1

Incremental 

#2

Incremental 

#3
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Incremental Execution: Planner polls

Planner
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Incremental Execution: Planner runs

Planner

Offset: 1 - 5
Incremental 

#1

R

U

N

Count: 5
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Incremental Execution: Planner runs #2

Planner

Offset: 1 - 5
Incremental 

#1

Incremental 

#2
Offset: 6 - 9

R

U

N

Count: 5

Count: 4
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Aggregation with State

Planner

Offset: 1 - 5
Incremental 

#1

Incremental 

#2
Offset: 6 - 9

R

U

N

Count: 5

Count: 5+4=9

5
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DataSet.explain()

== Physical Plan ==
Project [avg(price)#43,carat#45]
+- SortMergeJoin [color#21], [color#47]

:- Sort [color#21 ASC], false, 0
:  +- TungstenExchange hashpartitioning(color#21,200), None
:     +- Project [avg(price)#43,color#21]
:        +- TungstenAggregate(key=[cut#20,color#21], functions=[(avg(cast(price#25 as 

bigint)),mode=Final,isDistinct=false)], output=[color#21,avg(price)#43])
:           +- TungstenExchange hashpartitioning(cut#20,color#21,200), None
:              +- TungstenAggregate(key=[cut#20,color#21], 

functions=[(avg(cast(price#25 as bigint)),mode=Partial,isDistinct=false)], 
output=[cut#20,color#21,sum#58,count#59L])

:                 +- Scan CsvRelation(-----)
+- Sort [color#47 ASC], false, 0

+- TungstenExchange hashpartitioning(color#47,200), None
+- ConvertToUnsafe

+- Scan CsvRelation(----)
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What’s the difference between 

Complete and Append 

output modes?
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COMPLETE, APPEND & 

UPDATE
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There are two main modes and one in future

• append (default)
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There are two main modes and one in future

• append (default)

• complete 
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There are two main modes and one in future

• append (default)

• complete 

• update [in dreams]
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Aggregation with watermarks
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SOURCES & SINKS
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Spark Streaming is a brick in the Big Data Wall
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Let's save to Parquet files
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Let's save to Parquet files
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File to 

Memory
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Can we write to Kafka?
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Nightly Build
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Kafka-to-Kafka
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J-K-S-K-S-C
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Pipeline 

Demo
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I didn’t find sink/source for XXX…
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Console 

Foreach

Sink

import org.apache.spark.sql.ForeachWriter

val customWriter = new ForeachWriter[String] {

override def open(partitionId: Long, version: Long) = true

override def process(value: String) = println(value)

override def close(errorOrNull: Throwable) = {}

}

stream.writeStream

.queryName(“ForeachOnConsole")

.foreach(customWriter)

.start
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Pinch of wisdom

• check checkpointLocation

• don’t use MemoryStream

• think about GC pauses

• be careful about nighty builds

• use .groupBy.count() instead count()

• use console sink instead .show() function
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We have no ability…

• join two streams

• work with update mode

• make full outer join

• take first N rows

• sort without pre-aggregation



108Spark Streaming from Zinoviev Alexey

Roadmap 2.2

• Support other data sources (not only S3 + HDFS)

• Transactional updates

• Dataset is one DSL for all operations

• GraphFrames + Structured MLLib

• KafkaWriter

• TensorFrames
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IN CONCLUSION
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Final point

Scalable Fault-Tolerant Real-Time Pipeline with 

Spark & Kafka 

is ready for usage
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A few papers about Spark Streaming and Kafka

Introduction in Spark + Kafka

http://bit.ly/2mJjE4i

https://zaleslaw.gitbooks.io/data-processing-book/content/intro-kak-bystro-nachat-rabotu-s-kafka.html
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Contacts

E-mail : Alexey_Zinovyev@epam.com

Twitter : @zaleslaw @BigDataRussia

Facebook: https://www.facebook.com/zaleslaw

vk.com/big_data_russia Big Data Russia

vk.com/java_jvm Java & JVM langs



113Spark Streaming from Zinoviev Alexey

Any questions?


