
Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

VectorizaAon	and	the	JVM	

Vladimir	Ivanov	
HotSpot	JVM	Compiler	
Oracle	Corp.	
April	8,	2017	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  SIMD	ISA	extensions	
– packed	vectors	on	x86	

•  JVM	
– auto-vectorizaAon,	intrinsics	

•  Future	
– JDK	9	
– Vector	API	

2	

Agenda	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0x11529c8c0:	mov				%eax,-0x16000(%rsp)	
0x11529c8c7:	push			%rbp	
0x11529c8c8:	sub				$0x20,%rsp										
0x11529c8cc:	mov				%rdx,(%rsp)	
0x11529c8d0:	mov				%rsi,%rbp	
0x11529c8d3:	movabs	$0x7c0013d10,%rsi	
0x11529c8dd:	nop	
0x11529c8de:	nop	
0x11529c8df:	nop	
0x11529c8e0:	vzeroupper	
0x11529c8e3:	callq		0x00000001152418a0	
0x11529c8e8:	mov				%rax,%rbx											
0x11529c8eb:	mov				(%rsp),%r10	
0x11529c8ef:	vmovdqu	0x10(%r10),%ymm1	
0x11529c8f5:	vmovdqu	0x10(%rbp),%ymm0	
0x11529c8fa:	vpaddd	%ymm0,%ymm1,%ymm0	
0x11529c8fe:	vmovdqu	%ymm0,0x10(%rbx)			
0x11529c903:	mov				%rbx,%rax	
0x11529c906:	vzeroupper	
0x11529c909:	add				$0x20,%rsp	
0x11529c90d:	pop				%rbp	

0x11529d240:	mov				%eax,-0x16000(%rsp)	
0x11529d247:	push			%rbp	
0x11529d248:	sub				$0x30,%rsp										
0x11529d24c:	mov				%rcx,%rbp	
0x11529d24f:	vmovdqu	0x10(%rsi),%ymm0	
0x11529d254:	vmovdqu	0x10(%rdx),%ymm1	
0x11529d259:	vpaddd	%ymm0,%ymm1,%ymm0	
0x11529d25d:	vmovdqu	%ymm0,(%rsp)							
0x11529d262:	movabs	$0x7c0013d10,%rsi	
0x11529d26c:	vzeroupper	
0x11529d26f:	callq		0x00000001152418a0	
0x11529d274:	mov				%rax,%rbx	
0x11529d277:	vmovdqu	0x10(%rbp),%ymm1	
0x11529d27c:	vmovdqu	(%rsp),%ymm0	
0x11529d281:	vpaddd	%ymm0,%ymm1,%ymm0	
0x11529d285:	vmovdqu	%ymm0,0x10(%rbx)	
0x11529d28a:	mov				%rbx,%rax	
0x11529d28d:	vzeroupper	
0x11529d290:	add				$0x30,%rsp	
0x11529d294:	pop				%rbp	
0x11529d295:	test			%eax,-0xb78729b(%rip)	

x86	Assembly	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

mov	0x10(%src),%dst	
	
vs	
	

mov	dst,[src+10h]	
	

4	

Assembly	Syntax	
AT&T	

Intel	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 5	

“The	Free	Lunch	Is	Over”,	Herb	SuZer,	2005	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Machines	
– Hadoop	(Map/Reduce),	Apache	Spark		

• Cores/hardware	threads	
– Java	Stream	API	
– Fork/Join	framework		

• CPU	SIMD	extensions	
– x86:	SSE	...,	AVX,	…,	AVX-512		

6	

Going	Parallel	
<	10^3-10^6	
	

	
<	10s-100s	
	
	

	
<	10s	

														(servers)	
	

	
											(threads)	

	
	

	
				(elements)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• CPUs	
– SIMD	ISA	extensions	(Single	InstrucAon-MulAple	Data)	
– threads	(MulAple	InstrucAons-MulAple	Data)	

	
• Co-processors	

– GPUs	
– FPGAs	
– ASICs	

•  Data	AnalyAcs	Accelerator	(DAX)	on	SPARC	

7	

Going	Parallel:	CPUs	vs	Co-processors	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Machines	
– up	to	12	cards	/	server	

	
•  Intel	Xeon	Phi	

– 4	threads	x	72	cores	

	
• AVX-512	

– 2	units	/	core	

8	

SIMD	vs	MIMD	
<	10^3-10^6									12x	
	

	
<	10s-100s	
	
	

	
<	10s	

														(servers)	
	

	
					288								(threads)	

	
						

	
	16		SP			(elements)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Machines	
– up	to	12	cards	/	server	

	
•  Intel	Xeon	Phi	

– 4	threads	x	72	cores	

	
• AVX-512	

– 2	units	/	core	

9	

SIMD	vs	MIMD	
<	10^3-10^6									12x	
	

	
<	10s-100s	
	
	

	
<	10s	

														(servers)	
	

	
					288								(threads)	

	
				vs		

	
	16		SP			(elements)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Machines	
– up	to	12	cards	/	server	

	
•  Intel	Xeon	Phi	

– 4	threads	x	72	cores	

	
• AVX-512	

– 2	units	/	core	

10	

SIMD	vs	MIMD	
<	10^3-10^6									12x	
	

	
<	10s-100s	
	
	

	
<	10s	

														(servers)	
	

	
					288								(threads)	

	
				vs		

	
	16		SP			(elements)	

4608-way	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  x86:	MMX,	SSE,	AVX	
– 8	64-bit	registers	(MMX)	to	32	512-bit	registers	(AVX-512)	

• ARM:	NEON	
– 32	128-bit	registers	

•  SPARC:	VIS	
– 32	64-bit	registers	

• POWER:	VMX/AlAVec	
– 32	128-bit	registers	

SIMD	today	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Wide	(mulA-word)	registers	
– 128-bit	(xmm)	
– 256-bit	(ymm)	
– 512-bit	(zmm)	
	

•  InstrucAons	on	packed	vectors	
– packed	in	a	register	or	memory	locaAon	
– short	vectors	of	integer	/	FP	numbers	

•  2	x	double,	4	x	int,	8	x	short	
– hard-coded	vector	size	

12	

x86	SIMD	Extensions	

0	128	256	512	

xmm0	ymm0	zmm0	

xmm0	
0	32	64	96	128	

int	int	int	int	

double	 double	

short	 short	 short	 short	 short	 short	 short	 short	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

//	Load	A[i:i+3]	
vmovdqu	0x10(%rcx,%rdx,4),%xmm0	

//	Load	B[i:i+3]	

vmovdqu	0x10(%r10,%rdx,4),%xmm1	

//	A[i:i+3]	+	B[i:i+3]	

vpaddd	%xmm0,%xmm1,%xmm2	

//	Store	into	C[i:i+3]	

vmovdqu	%xmm2,0x10(%r8,%rdx,4)	

13	

x86	SIMD	Extensions	

A[i+0]	A[i+1]	A[i+2]	A[i+3]	

B[i+0]	B[i+1]	B[i+2]	B[i+3]	

+	 +	 +	 +	

=	 =	 =	 =	

C[i+3]	C[i+2]	C[i+1]	C[i+0]	

xmm0	

xmm1	

xmm2	

memory	

int[]	

A[i+3]	A[i+2]	A[i+1]	A[i+0]	

memory	

int[]	

B[i+3]	B[i+2]	B[i+1]	B[i+0]	int[]	B[]	

A[]	

C[]	

C[i+0]	C[i+1]	C[i+2]	C[i+3]	

32	96	128	

registers	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Year	 Name	 Reg	Size	(bit)	
1997	 MMX	 64	 mm0-7	
1999	 SSE	 128	 xmm0-7	
2001	 SSE2	 128	 xmm0-15	
2004	 SSE3	 128	 xmm0-15	
2006	 SSSE	3	 128	 xmm0-15	
2006	 SSE	4.1	 128	 xmm0-15	
2008	 SSE	4.2	 128	 xmm0-15	
2011	 AVX	 256	 ymm0-15	
2013	 AVX2	 256	 ymm0-15	
2013	 FMA3	 256	 ymm0-15	
2015	 AVX-512	 512	 zmm0-31	(k0-7)	

14	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

How	to	uAlize	SIMD	instrucAons?	

15	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• AutomaAc	
– sequenAal	languages	and	pracAces	gets	in	the	way		
			

•  Semi-automaAc		
– Give	your	compiler/runAme	hints	and	hope	it	vectorizes	
– OpenMP	4.0	#pragma	omp	simd	

	
• Code	explicitly		

– SIMD	instrucAon	intrinsics		

16	

VectorizaAon	techniques	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

If	the	code	is	compiled	for	a	parKcular	instrucKon	set	then	
it	will	be	compaKble	with	all	CPUs	that	support	this	

instrucAon	set	or	any	higher	instrucAon	set,	but	possibly	
not	with	earlier	CPUs.	

17	

Problem	

SSE	4.2	<<	AVX-512	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Idea:		
	Make	criAcal	parts	of	the	code	in	mulKple	versions	for	different	CPUs.	

	
•  For	example,	provide:		

– AVX2	&	SSE	4.2	specializaAons	
– generic	version	that	is	compaAble	with	old	microprocessors	

•  	The	program	should	automaAcally	detect	which	instrucAon	set	is	
supported	and	choose	the	appropriate	version.		

18	

CPU	Dispatching	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

“It	is	quite	expensive	-	in	terms	of	development,	tesAng	
and	maintenance	-	to	make	a	piece	of	code	in	mulAple	
versions,	each	carefully	opAmized	and	fine-tuned	for	a	

parAcular	set	of	CPUs.	“	
	

“OpAmizing	sowware	in	C++”,	Agner	Fog	
	

19	

CPU	Dispatching	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• OpAmizing	for	present	processors	rather	than	future	processors		
•  Thinking	in	terms	of	specific	processor	models	rather	than	processor	
features	

• Assuming	that	processor	model	numbers	form	a	logical	sequence		
•  Failure	to	handle	unknown	processors	properly		
• UnderesAmaAng	the	cost	of	keeping	a	CPU	dispatcher	updated		
• Making	too	many	branches		
•  Ignoring	virtualizaAon		

20	

CPU	dispatching:	Common	pixalls	

“OpAmizing	sowware	in	C++”,	Agner	Fog	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

JVM	is	in	a	good	posiAon:	
	
1.  Java	bytecode	is	plaxorm-agnosAc	

2.  CPU	probing	at	runAme	(at	startup)	
– knows	everything	about	the	hardware	it	executes	at	the	moment	

3.  Dynamic	code	generaAon	
– only	use	instrucAons	which	are	available	on	the	host	

JVM	and	SIMD	today	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Hotspot	supports	some	of	x86	SIMD	instrucAons		

• AutomaAc	vectorizaAon	of	Java	code	
– Superword	opAmizaAons	in	HotSpot	C2	compiler	to	derive	SIMD	code	from	
sequenAal	code		

•  JVM	intrinsics	
– Array	copying,	filling,	and	comparison	

JVM	and	SIMD	today	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

JVM	Intrinsics	

23	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

	“A	method	is	intrinsified	if	the	HotSpot	VM	replaces	the	
annotated	method	with	hand-wriOen	assembly	and/or	hand-
wriOen	compiler	IR	--	a	compiler	intrinsic	--	to	improve	
performance.”	

@HotSpotIntrinsicCandidate	JavaDoc	

JVM	Intrinsics	

public	final	class	java.lang.Class<T>	implements	…	{		
				@HotSpotIntrinsicCandidate	
				public	native	boolean	isInstance(Object	obj);	
	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Array	copy	
– System.arraycopy(),	Arrays.copyOf()	

•  Array	mismatch	(@since	9)	
– Arrays.mismatch	
– ArraysSupport.vectorizedMismatch()	

25	

Vectorized	JVM	Intrinsics	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Auto-vectorizaAon	
by	JIT-compiler	

26	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 27	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 28	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SuperWord	opAmizaAon	is:	
1.  implemented	only	in	C2	JIT-compiler	

		hotspot/src/share/vm/opto/c2_globals.hpp:	
			product(bool,	UseSuperWord,	true,		
											"Transform	scalar	operations	into	superword	operations”)	

2.  applied	only	to	unrolled	loops	
– unrolling	is	performed	only	for	counted	loops	

	
	

29	

VectorizaAon:	Prerequisites	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

	
“Counted	loops	are	all	trip-counted	loops,	with	exactly	
1	trip-counter	exit	path	(and	maybe	some	other	exit	
paths).		The	trip-counter	exit	is	always	last	in	the	loop.		
The	trip-counter	have	to	stride	by	a	constant;	the	exit	
value	is	also	loop	invariant.”	

hotspot/src/share/vm/opto/loopnode.hpp:136	

30	

Trip-Counted	Loop	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	start;	i	<	limit;	i+=stride)	{	
				//	loop	body	
}	
	

int	i	=	start;	
while	(i	<	limit)	{	
				//	loop	body	
				i+=stride;	
}	
	
	

31	

Trip-Counted	Loop	
•  limit	is	loop	invariant	
•  stride	is	constant	(compile-Ame)	
	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

1.  $	java	…	-XX:+PrintCompilation	-XX:+TraceLoopOpts	…	
– available	only	in	debug	builds	
	
	129				1				b								TripCountedLoop::test1	(28	bytes)	
	Counted	Loop:	N100/N83		limit_check	predicated	counted	[0,100),+1	(-1	iters)		

2.  $	java	…	-XX:+PrintAssembly	…	
– and	eyeball	generated	code	

32	

How	to	detect?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

1.  $	java	…	-XX:+PrintCompilation	-XX:+TraceLoopOpts	…	
– available	only	in	debug	builds	
	
	129				1				b								TripCountedLoop::test1	(28	bytes)	
	Counted	Loop:	N100/N83		limit_check	predicated	counted	[0,100),+1	(-1	iters)		

2.  $	java	…	-XX:+PrintAssembly	…	
– and	eyeball	generated	code	

33	

How	to	detect?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	100;	i++)	{	/*loop	body*/	}	
	
		
$	java	…	-XX:+TraceLoopOpts	…	
	
Counted	Loop:	N100/N83		…	counted	[0,100),+1	(-1	iters)		
	

34	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	start;	i	<	100;	i++)	{	/*loop	body*/	}	
	
		
Counted	Loop:	N104/N84	…	counted	[int,100),+1	(-1	iters)		
	

35	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	start;	i	<	end;	i++)	{	/*loop	body*/	}	
	
		
Counted	Loop:	N104/N84	…	counted	[int,int),+1	(-1	iters)		
	

36	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	start;		
					i	<	end1	&&	i	<	end2;		
					i++)	{	…	}	
	
		
Counted	Loop:	N104/N84	…	counted	[int,int),+1	(-1	iters)		
	

37	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	start;		
					i	<	end1	||	i	<	end2;		
					i++)	{	…	}	
	
		
Loop:	N101/N93		limit_check	predicated	sfpts={	93	}	
PartialPeel				Loop:	N101/N93		limit_check	predicated	sfpts={	93	}	
Counted								Loop:	N136/N64		counted	[int,int),+1	(-1	iters)		

38	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	start;	i	<	end;	i+=2)	{	/*loop	body*/	}	
	
		
Counted	Loop:	N108/N85	…	counted	[int,int),+2	(-1	iters)		
	

39	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	start;	i	<	end;	i+=d)	{	/*loop	body*/	}	
	
for	(int	i	=	start;	i	<	end;	i*=2)	{	/*loop	body*/	}	
	
for	(int	i	=	start;	i	<	end;	i++)	{	
		…	if	(…)	{	end++;	}	…	
}	
	
	

40	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(long		l	=	0;	l	<	100;	l++)	{…}	
	
	
	
	

41	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(long		l	=	0;	l	<	100;	l++)	{…}	
	
for	(int			i	=	0;	i	<	100;	i++)	{…}	
	
for	(byte		b	=	0;	b	<	100;	b++)	{…}	
	
for	(short	s	=	0;	s	<	100;	s++)	{…}	
	
for	(char		c	=	0;	c	<	100;	c++)	{…}	
	
	
	

42	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	100;	i++)	{	
	…	f();	//	not	inlined	

}	
	
Counted	Loop:	…	counted	[0,100),+1	(-1	iters)	has_call	has_sfpt	

	
	
	
	

43	

Trip-Counted	Loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	100;	i++)	{	
	…	f();	//	not	inlined	

}	
	
Counted	Loop:	…	counted	[0,100),+1	(-1	iters)	has_call	has_sfpt	

	
	
	
	

44	

Trip-Counted	Loop?	

But	no	unrolling	happens,	hence	no	vectorizaAon.	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A,	B,	C;		
for	(int	i	=	0;	i	<	MAX;	i++)	{	
				A[i]	=	B[i]	+	C[i];	
}	

45	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	MAX-4;	i+=4)	{	//	main	loop	
				A[i+0]	=	B[i+0]	+	C[i+0];	
				A[i+1]	=	B[i+1]	+	C[i+1];	
				A[i+2]	=	B[i+2]	+	C[i+2];	
				A[i+3]	=	B[i+3]	+	C[i+3];	
}	
//	post-loop	

46	

Loop	unrolling	(4	Ames)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	MAX-4;	i+=4)	{	
				A[i+0]	=	B[i+0]	+	C[i+0];	
				A[i+1]	=	B[i+1]	+	C[i+1];	
				A[i+2]	=	B[i+2]	+	C[i+2];	
				A[i+3]	=	B[i+3]	+	C[i+3];	
}	

47	

Loop	unrolling	

A[i:i+3]		B[i:i+3]		C[i:i+3]		

isomorphic	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0x10a4249d0:	vmovdqu	0x10(%rcx,%rdx,4),%xmm0							;	B[i:i+3]	=>	xmm0	

0x10a4249d6:	vpaddd	0x10(%r10,%rdx,4),%xmm0,%xmm0		;	C[i:i+3]	+	xmm0	=>	xmm0	

0x10a4249dd:	vmovdqu	%xmm0,0x10(%r8,%rdx,4)								;	xmm0	=>	A[i:i+3]	

	

0x10a4249e4:	add				$0x4,%edx																						;	i	+=	4	

	

0x10a4249e7:	cmp				%r9d,%edx																						;		

0x10a4249ea:	jl					0x10a4249d0																				;	if	(i	<	(MAX-4))	repeat	

48	

8u121,	AVX2	(Haswell)	

Main	loop	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(long	l	=	0;	l	<	MAX-4;	l+=4)	{	//	main	loop	
				A[l+0]	=	B[l+0]	+	C[l+0];	
				A[l+1]	=	B[l+1]	+	C[l+1];	
				A[l+2]	=	B[l+2]	+	C[l+2];	
				A[l+3]	=	B[l+3]	+	C[l+3];	
}	
	
Nope…	No	unrolling	during	compilaAon,	hence	no	vectorizaAon.	

49	

Manual	unrolling?		

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int	i	=	0;	
for	(;	i	<	MAX-4;	i+=4)	{											//	main	loop	
				A[i:i+3]	=	B[i:i+3]	+	C[i:i+3];	
}	
for	(;	i	<	MAX;	i++)	{														//	post-loop	
				A[i]	=	B[i]	+	C[i];	
}	
	

50	

Vectorized	loop	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

//	main-loop	

0x10a4249d0:	vmovdqu	0x10(%rcx,%rdx,4),%xmm0	

0x10a4249d6:	vpaddd	0x10(%r10,%rdx,4),%xmm0,%xmm0	

0x10a4249dd:	vmovdqu	%xmm0,0x10(%r8,%rdx,4)	

0x10a4249e4:	add				$0x4,%edx	

0x10a4249e7:	cmp				%r9d,%edx	

0x10a4249ea:	jl					0x10a4249d0	

...	

//	post-loop	

0x10a4249f4:	mov				0x10(%r10,%rdx,4),%ebx		;	A[i]	=>	ebx	

0x10a4249f9:	add				0x10(%rcx,%rdx,4),%ebx		;	B[i]	+	ebx	=>	ebx	

0x10a4249fd:	mov				%ebx,0x10(%r8,%rdx,4)			;	ebx	=>	C[i]	

0x10a424a02:	inc				%edx																				;	i++	

0x10a424a04:	cmp				%r11d,%edx														;		

0x10a424a07:	jl					0x10a4249f4													;	if	(i	<	MAX)	repeat	
51	

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

//	???	

0x10a42499d:	mov				0x10(%r10,%rdx,4),%r9d	

0x10a4249a2:	add				0x10(%rcx,%rdx,4),%r9d	

0x10a4249a7:	mov				%r9d,0x10(%r8,%rdx,4)	

0x10a4249ac:	inc				%edx	

0x10a4249ae:	cmp				%edi,%edx	

0x10a4249b0:	jl					0x10a42499d	

…	

//	main-loop	

0x10a4249d0:	vmovdqu	0x10(%rcx,%rdx,4),%xmm0	

0x10a4249d6:	vpaddd	0x10(%r10,%rdx,4),%xmm0,%xmm0	

0x10a4249dd:	vmovdqu	%xmm0,0x10(%r8,%rdx,4)	

0x10a4249e4:	add				$0x4,%edx	

0x10a4249e7:	cmp				%r9d,%edx	

0x10a4249ea:	jl					0x10a4249d0	
52	

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int	i	=	0,	prefix	=	???;	
for	(;	i	<	prefix;	i++)	{												//	pre-loop	
				A[i]	=	B[i]	+	C[i];	
}	
for	(;	i	<	MAX-4;	i+=4)	{												//	main	loop	
				A[i:i+3]	=	B[i:i+3]	+	C[i:i+3];	
}	
for	(;	i	<	MAX;	i++)	{															//	post-loop	
				A[i]	=	B[i]	+	C[i];	
}	
	

53	

Vectorized	loop	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 54	

Alignment	

A[i+2]	A[i+1]	A[i]	A[0]	int[]	 A[MAX-4]	
+16	0	

8	 8	 64	
MAX	

Pre-loop	 Main	loop	 Post-loop	Header	

Cache	line	

mov	 mov	 vmovdqu	 vmovdqu	 mov	 mov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 55	

Alignment	

A[i+2]	A[i+1]	A[i]	A[0]	int[]	 A[MAX-4]	
+16	0	

8	 8	 64	
MAX	

Pre-loop	 Main	loop	 Post-loop	Header	

Cache	line	

mov	 mov	 vmovdqu	 vmovdqu	 mov	 mov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

T	 no	unrolling	 not	vectorized	 vectorized	

byte	 592	±6	 506	±6	 159	±4	
short	 541	±7	 495	±4	 140	±3	
char	 537	±4	 493	±4	 141	±2	
int	 532	±5	 490	±4	 154	±2	
long	 533	±8	 492	±5	 157	±2	
float	 530	±4	 489	±7	 155	±2	
double	 526	±5	 483	±4	 172	±3	

56	

<any	T>	void	add	(T[]	A,	T[]	B,	T[]	C)	{	
				for	(int	i	=	0;	i	<	MAX;	i++)	{	
								A[i]	=	B[i]	+	C[i];	
				}	
}	

MAX	=	1000	
Core	i7,	1x2x2,	Haswell	(AVX2)	
8u121,	macos-x64,	ns/op		

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0x10a4249d0:	vmovdqu	0x10(%rcx,%rdx,4),%xmm0							;	B[i:i+3]	=>	xmm0	

0x10a4249d6:	vpaddd	0x10(%r10,%rdx,4),%xmm0,%xmm0		;	C[i:i+3]	+	xmm0	=>	xmm0	

0x10a4249dd:	vmovdqu	%xmm0,0x10(%r8,%rdx,4)								;	xmm0	=>	A[i:i+3]	

	

0x10a4249e4:	add				$0x4,%edx																						;	i	+=	4	

	

0x10a4249e7:	cmp				%r9d,%edx																						;		

0x10a4249ea:	jl					0x10a4249d0																				;	if	(i	<	(MAX-4))	repeat	

57	

8u121,	AVX2	(Haswell)	

Main	loop	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0x10a4249d0:	vmovdqu	0x10(%rcx,%rdx,4),%xmm0							;	B[i:i+3]	=>	xmm0	

0x10a4249d6:	vpaddd	0x10(%r10,%rdx,4),%xmm0,%xmm0		;	C[i:i+3]	+	xmm0	=>	xmm0	

0x10a4249dd:	vmovdqu	%xmm0,0x10(%r8,%rdx,4)								;	xmm0	=>	A[i:i+3]	

	

0x10a4249e4:	add				$0x4,%edx																						;	i	+=	4	

	

0x10a4249e7:	cmp				%r9d,%edx																						;		

0x10a4249ea:	jl					0x10a4249d0																				;	if	(i	<	(MAX-4))	repeat	

58	

8u121,	AVX2	(Haswell)	

Hmm…	Why	not	256-bit?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0x117023512:	vmovdqu	0x10(%rbx,%rcx,4),%ymm0	

0x117023518:	vpaddd	0x10(%rdi,%rcx,4),%ymm0,%ymm0	

0x11702351e:	vmovdqu	%ymm0,0x10(%r9,%rcx,4)	

…	

0x11702354f:	vmovdqu	0x70(%rbx,%r8,4),%ymm0	

0x117023556:	vpaddd	0x70(%rdi,%r8,4),%ymm0,%ymm0	

0x11702355d:	vmovdqu	%ymm0,0x70(%r9,%r8,4)	

	

0x117023564:	add				$0x20,%ecx	

	

0x117023567:	cmp				%r10d,%ecx	

0x11702356a:	jl					0x117023512	

	
59	

jdk9-b163,	AVX2	(Haswell)	

All	right,	compiler	problem.	Fixed	in	9.	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0x117023512:	vmovdqu	0x10(%rbx,%rcx,4),%ymm0									;	iteration	#1	

0x117023518:	vpaddd	0x10(%rdi,%rcx,4),%ymm0,%ymm0				;	A[i:i+7]	=	B[…]	+	C[…]		

0x11702351e:	vmovdqu	%ymm0,0x10(%r9,%rcx,4)										;		

…																																																				;	…	

0x11702354f:	vmovdqu	0x70(%rbx,%r8,4),%ymm0										;	iteration	#4	

0x117023556:	vpaddd	0x70(%rdi,%r8,4),%ymm0,%ymm0					;	A[i+24:i+31]	=	…	

0x11702355d:	vmovdqu	%ymm0,0x70(%r9,%r8,4)											;		

	

0x117023564:	add				$0x20,%ecx																							;	i	+=	32;	//	(4*8)	

	

0x117023567:	cmp				%r10d,%ecx	

0x11702356a:	jl					0x117023512	

	
60	

jdk9-b163,	AVX2	(Haswell)	

But	wait…	What	happened	to	main	loop?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 61	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

“…	we	leverage	unroll	factors	from	the	baseline	loop	which	are	much	larger	
to	obtain	opKmum	throughput	on	x86	architectures.	The	upliw	range	on	
SpecJvm2008	is	seen	on	scimark.lu.{small|large}	with	upliw	noted	at	3%	and	
8%	respecAvely.	We	see	as	much	as	1.5x	upliw	on	vector	centric	micros	like	
reducAons	on	default	opAmizaAons.”	

Michael	Berg,	Intel	
JDK-8129920	

62	

JDK-8129920:	Vectorized	Loop	Unrolling	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

	
for	(;	i	<	a;	i++)	{	…	}													//	pre-loop	
	
for	(;	i	<	MAX-4;	i+=4)	{												//	main	loop	
				A[i:i+3]	=	B[i:i+3]	+	C[i:i+3];	
}	
for	(;	i	<	MAX;	i++)	{															//	post-loop	
				A[i]	=	B[i]	+	C[i];	
}	
	

63	

JDK	9:	Vectorized	Loop:	Before	Unrolling	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(;	i	<	MAX-step;	i+=step)	{			//	main	loop	
				A[i:i+V]							=	B[i:i+V]							+	C[i:i+V];	
				A[i+V:i+2*V]			=	B[i+V:i+2*V]			+	C[i+V:i+2*V];	
				A[i+2*V:i+3*V]	=	B[i+2*V:i+3*V]	+	C[i+2*V:i+3*V];	
				A[i+3*V:i+4*V]	=	B[i+3*V:i+4*V]	+	C[i+3*V:i+4*V];	
}	
for	(;	i	<	MAX;	i++)	{	A[i]	=	B[i]	+	C[i];	}	//	post-loop	
	
int	step	=	4	/*unroll_factor*/	*	max_vector_size;	
int	V	=	max_vector_size	–	1;	
	
	

64	

JDK	9:	Vectorized	Loop:	Awer	Unrolling	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int	step	=	unroll_factor	*	max_vector_size;	
	
for	(;	i	<	MAX-step;	i+=step)	{	…	}			//	main	loop	
	
//	NB!	Up	to	(unroll_factor	*	max_vector_size)	iterations	
for	(;	i	<	MAX;	i++)	{	A[i]	=	B[i]	+	C[i];	}	//	post-loop	
	
	

65	

JDK	9:	Vectorized	Main	Loop	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

	
“the	addiAon	of	atomic	unrolled	drain	loops	which	precede	fix-up	segments	
and	which	are	significantly	faster	than	scalar	code.	The	requirement	is	that	
the	main	loop	is	super	unrolled	awer	vectorizaAon.		I	see	up	to	54%	upliw	on	
micro	benchmarks	on	x86	targets	for	loops	which	pass	superword	
vectorizaAon	and	which	meet	the	above	criteria.”	

Michael	Berg,	Intel	
hotspot-compiler-dev@ojn 		

	

66	

JDK-8149421:	Vectorized	Post	Loops	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

	
for	(;	i	<	MAX-4;	i+=4)	{	//	vectorized	post-loop	
				A[i:i+3]	=	B[i:i+3]	+	C[i:i+3];	
}	//	trip-count	in	[0;	unroll_factor)	
	
for	(;	i	<	MAX;	i++)	{				//	post-loop	
				A[i]	=	B[i]	+	C[i];	
}	//	trip-count	in	[0;	max_vector_size)	

67	

JDK	9:	Vectorized	Post-loop	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

T	 no	unrolling	 not	vectorized	 vectorized	 jdk9-b163	

byte	 592	±6	 506	±6	 159	±4	 69	±3	
short	 541	±7	 495	±4	 140	±3	 69	±4	
char	 537	±4	 493	±4	 141	±2	 68	±2	
int	 532	±5	 490	±4	 154	±2	 74	±1	
long	 533	±8	 492	±5	 157	±2	 141	±1	
float	 530	±4	 489	±7	 155	±2	 80	±3	
double	 526	±5	 483	±4	 172	±3	 167	±2	

68	

<any	T>	void	add	(T[]	A,	T[]	B,	T[]	C)	{	
				for	(int	i	=	0;	i	<	MAX;	i++)	{	
								A[i]	=	B[i]	+	C[i];	
				}	
}	

MAX	=	1000	
Core	i7,	1x2x2,	Haswell	(AVX2)	
8u121,	macos-x64,	ns/op		

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MAX	 8u121	 jdk9-b163	

0	 2.0	±0	 2	±0	

ns/op	

1	 3.8	±0	 3.8	±0	
10	 7.3	±2	 8.2	±1	
100	 22	±1	 17	±1	
10^3	 153	±4	 73	±3	
10^4	 2058	±57	 2025	±14	
10^5	 36±1	 35	±1	

μs/op	10^6	 858	±34	 883	±14	
10^7	 8751	±145		 9144		±14	

69	

Core	i7,	1x2x2,	Haswell	(AVX2)	
macos-x64	T	=	int	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]++;	
	

70	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]++;	
	

71	

[Constants]	

0x102222b60:	0x00000001	

…	

vmovq		0x102222b60,%xmm0	

vpunpcklqdq	%xmm0,%xmm0,%xmm0	

vinserti128	$0x1,%xmm0,%ymm0,%ymm0	

	

//	Main	loop	

vmovdqu	0x10(%r10,%rcx,4),%ymm1	

vpaddd	%ymm0,%ymm1,%ymm1	

vmovdqu	%ymm1,0x10(%r11,%rcx,4)			

	

add				$0x8,%ecx											

cmp				%r9d,%ecx	

jl					…		

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	*=	10;		
	

72	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	*=	10;		
	

73	

//	Main	loop	

vmovdqu	0x10(%r10,%r11,4),%ymm0			

vpslld	$0x1,%ymm0,%ymm1	

vpslld	$0x3,%ymm0,%ymm0	

vpaddd	%ymm0,%ymm1,%ymm0	

vmovdqu	%ymm0,0x10(%r10,%r11,4)			

	

add				$0x8,%r11d										

cmp				%r8d,%r11d	

jl					...		

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A,	B,	C;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	=	B[i]	*	C[i];		
	

74	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A,	B,	C;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	=	B[i]	*	C[i];		
	

75	

//	Main	loop	

vmovdqu	0x10(%rcx,%rdx,4),%xmm0	

vpmulld	0x10(%r10,%rdx,4),%xmm0,%xmm0	

vmovdqu	%xmm0,0x10(%r8,%rdx,4)	

	

add				$0x4,%edx	

cmp				%r9d,%edx	

jl					…		

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

float[]	A,	B,	C;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	=	B[2*i]	*	C[2*i];	
	
	

76	

Strided	Access	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

float[]	A,	B,	C;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	=	B[2*i]	*	C[2*i];	
	
	

77	

Strided	Access	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A,	B,	C;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	=	B[2*i]	*	C[2*i];	
	
	
	

78	

Strided	Access	 //	Main	loop	

…	

vmovss	0x18(%rax,%rcx,4),%xmm4	

vaddss	0x18(%rdx,%rcx,4),%xmm4,%xmm1	

vmovss	%xmm1,0x14(%r11,%r9,4)	

vmovss	0x20(%rax,%rcx,4),%xmm4	

vaddss	0x20(%rdx,%rcx,4),%xmm4,%xmm1	

vmovss	%xmm1,0x18(%r11,%r9,4)	

vmovss	0x28(%rdx,%rcx,4),%xmm4	

vaddss	0x28(%rax,%rcx,4),%xmm4,%xmm1	

vmovss	%xmm1,0x1c(%r11,%r9,4)			

	

add				$0x4,%r10d			

...	

	

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int[]	A,	B,	C;		
for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	=	B[2*i]	*	C[2*i];	
	
	
	
VGATHERD*	in	AVX2,	but:	
• no	scaZer	operaAons	
• only	floaAng	point	variants	
	

79	

Strided	Access	 //	Main	loop	

…	

vmovss	0x18(%rax,%rcx,4),%xmm4	

vaddss	0x18(%rdx,%rcx,4),%xmm4,%xmm1	

vmovss	%xmm1,0x14(%r11,%r9,4)	

vmovss	0x20(%rax,%rcx,4),%xmm4	

vaddss	0x20(%rdx,%rcx,4),%xmm4,%xmm1	

vmovss	%xmm1,0x18(%r11,%r9,4)	

vmovss	0x28(%rdx,%rcx,4),%xmm4	

vaddss	0x28(%rax,%rcx,4),%xmm4,%xmm1	

vmovss	%xmm1,0x1c(%r11,%r9,4)			

	

add				$0x4,%r10d			

...	

	

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	about	Unsafe?	

80	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

//	On-heap	
long	off	=	Unsafe.ARRAY_INT_BASE_OFFSET;	
for	(int	i	=	0;	i	<	MAX;	i++)	{	
				//	A[i]	=	B[i]	+	C[i]	
				int	val	=	U.getInt(B,	off)	
												+	U.getInt(C,	off);	
				U.putInt(A,	off,	val);	
				off	+=	Unsafe.ARRAY_INT_INDEX_SCALE;	
}	
	

81	

What	about	Unsafe?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

//	On-heap	
long	off	=	Unsafe.ARRAY_INT_BASE_OFFSET;	
for	(int	i	=	0;	i	<	MAX;	i++)	{	
				//	A[i]	=	B[i]	+	C[i]	
				int	val	=	U.getInt(B,	off)	
												+	U.getInt(C,	off);	
				U.putInt(A,	off,	val);	
				off	+=	Unsafe.ARRAY_INT_INDEX_SCALE;	
}	
	

82	

What	about	Unsafe?	 //	Main	loop	

...	

mov				%rdx,%rdi	

add				%r9,%rdi	

mov				(%rcx),%r8d			

...	

add				$0x20,%r9											

add				$0x8,%r10d										

cmp				%eax,%r10d	

jl					...	

	

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

//	Off-heap	
long	addrA	=	U.allocateMemory(...);	
long	addrB	=	U.allocateMemory(...);	
long	addrC	=	U.allocateMemory(...);	
	

for	(int	i	=	0;	i	<	MAX;	i++)	{	
				long	off		=	i	*	4;	
				int	val	=	U.getInt(null,	addrB	+	off)		
												+	U.getInt(null,	addrC	+	off);	
				U.putInt(null,	addrA	+	off,	val);	
}	
	

83	

What	about	Unsafe?	 //	Main	loop	

…	

mov		0x0(%rbp,%rax,1),%r11d	

add		(%rdi,%rax,1),%r11d	

mov		%r11d,(%rbx,%rax,1)	

…	

add				$0x8,%r10d										

cmp				%r14d,%r10d	

jl					…	

8u121,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 84	

Unsafe	==	Fast	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 85	

Unsafe	==	Fast	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

ReducAons	

86	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 87	

Horizontal	AddiAon	

+	 +	 +	 +	

xmm1	 xmm0	

xmm2	

VPHADDD	%xmm0,%xmm1,%xmm2	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 88	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

public	int	sum(int[]	A)	{	
				int	sum	=	0;	
				for	(int	a	:	A)	{	
								sum	+=	a;	
				}	
				return	sum;	
}	
	
	

89	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

public	int	sum(int[]	A)	{	
				int	sum	=	0;	
				for	(int	a	:	A)	{	
								sum	+=	a;	
				}	
				return	sum;	
}	
	
	

90	

//	Main	loop	

add		0x10(%r8,%rcx,4),%eax	

add		0x14(%r8,%rcx,4),%eax	

add		0x18(%r8,%rcx,4),%eax	

add		0x1c(%r8,%rcx,4),%eax	

add		0x20(%r8,%rcx,4),%eax	

add		0x24(%r8,%rcx,4),%eax	

add		0x28(%r8,%rcx,4),%eax	

add		0x2c(%r8,%rcx,4),%eax			

	

add		$0x8,%ecx											

cmp		%r10d,%ecx	

jl			…	

jdk9-b163,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

“ReducAon	vector	opAmizaAon	could	be	expensive	for	simple	
expressions	because	it	uses	several	addiAonal	instrucAons	per	
vector.	[…]	We	need	to	restrict	reducAon	opAmizaAon	only	to	
cases	when	it	is	beneficial.”		
	

8074981:	Restrict	reducAon	opAmizaAon	
	

91	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int	dotProduct(int[]	A,	int[]	B)	{	
		int	r	=	0;	
		for	(int	i	=	0;	i	<	MAX;	i++)	{	
				r	+=	A[i]*B[i];	
		}	
		return	r;	
}	
	

92	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int	dotProduct(int[]	A,	int[]	B)	{	
		int	r	=	0;	
		for	(int	i	=	0;	i	<	MAX;	i++)	{	
				r	+=	A[i]*B[i];	
		}	
		return	r;	
}	
	

93	

//	Vectorized	post-loop	

vmovdqu	0x10(%rdi,%r11,4),%ymm0	

vmovdqu	0x10(%rbx,%r11,4),%ymm1	

vpmulld	%ymm0,%ymm1,%ymm0	

vphaddd	%ymm0,%ymm0,%ymm3	

vphaddd	%ymm1,%ymm3,%ymm3	

vextracti128	$0x1,%ymm3,%xmm1	

vpaddd	%xmm1,%xmm3,%xmm3	

vmovd		%eax,%xmm1	

vpaddd	%xmm3,%xmm1,%xmm1	

vmovd		%xmm1,%eax										

add				$0x8,%r11d										

cmp				%r8d,%r11d	

jl					0x117e23668	

jdk9-b163,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

int	dotProduct(int[]	A,	int[]	B)	{	
		int	r	=	0;	
		for	(int	i	=	0;	i	<	MAX;	i++)	{	
				r	+=	A[i]*B[i];	
		}	
		return	r;	
}	
	

94	

//	Vectorized	post-loop	

vmovdqu	0x10(%rdi,%r11,4),%ymm0	

vmovdqu	0x10(%rbx,%r11,4),%ymm1	

vpmulld	%ymm0,%ymm1,%ymm0	

vphaddd	%ymm0,%ymm0,%ymm3	

vphaddd	%ymm1,%ymm3,%ymm3	

vextracti128	$0x1,%ymm3,%xmm1	

vpaddd	%xmm1,%xmm3,%xmm3	

vmovd		%eax,%xmm1	

vpaddd	%xmm3,%xmm1,%xmm1	

vmovd		%xmm1,%eax										

add				$0x8,%r11d										

cmp				%r8d,%r11d	

jl					0x117e23668	

jdk9-b163,	AVX2	(Haswell)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 95	

VPHADDD	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Fused	MulAply-Add	(FMA)	

96	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Single	InstrucAon	–	MulAple	Nested	operaAons		

• Use	cases	
– dot	product	

				for	(int	i	=	0;	i	<	MAX;	i++)	
						r	=	r	+	A[i]*B[i];	

	
– matrix	mulAplicaAon	

				for	(int	k	=	0;	k	<	MAX;	k++)	
						r	=	r	+	A[i][k]*B[k][j];	

97	

Fused	OperaAons	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Mnemonic	 Operands	 OperaKon	

VFMADDPDy	
ymm,	ymm,	ymm/m256	

a	=	b	*	c	+	d	

VFMADDPSy	
VFMADDPDx	

xmm,	xmm,	xmm/m128	
VFMADDPSx	
VFMADDSD	 xmm,	xmm,	xmm/m64	
VFMADDSS	 xmm,	xmm,	xmm/m32	

98	

FMA4	(only	AMD)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Mnemonic	 OperaKon	

VFMADD132…	 a	=	a	*	c	+	b	
VFMADD213…	 a	=	b	*	a	+	c	
VFMADD231…	 a	=	b	*	c	+	a	

99	

FMA3	(both	Intel	&	AMD)	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

float[]	A,	B,	C,	D	=	…;	
	

for	(int	i	=	0;	i	<	MAX;	i++)	{	
		A[i]	=	B[i]	*	C[i]	+	D[i];	
}	
	
	

100	

//	Vectorized	post-loop	

vmovdqu	0x10(%r8,%r11,4),%ymm0	

vmulps	0x10(%rcx,%r11,4),%ymm0,%ymm0	

vaddps	0x10(%rax,%r11,4),%ymm0,%ymm0	

vmovdqu	%ymm0,0x10(%rdx,%r11,4)			

	

add				$0x8,%r11d	

	

cmp				%r10d,%r11d	

jl					…	

	

jdk9/hs,	AVX2	(Haswell)	

Vectorized,	no	FMA.	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

float[]	A,	B,	C,	D	=	…;	
	

for	(int	i	=	0;	i	<	MAX;	i++)	{	
		A[i]	=	Math.fma(B[i],	C[i],	D[i]);	
}	
	
	

101	

//	Post-loop	

vmovss	0x10(%r11,%rbx,4),%xmm1	

vmovss	0x10(%r9,%rbx,4),%xmm0			

vmovss	0x10(%r8,%rbx,4),%xmm3	

vfmadd231ss	%xmm1,%xmm0,%xmm3			

vmovss	%xmm3,0x10(%r10,%rbx,4)			

	

inc				%ebx																

cmp				%edi,%ebx	

jl					...	

	

jdk9/hs,	AVX2	(Haswell)		
Math.fma()	//	@since	9	

Not	vectorized,	scalar	FMA.	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

8153998:	Masked	vector	post	loops	
8080325:	SuperWord	loop	unrolling	analysis	

8151573:	MulAversioning	for	range	check	eliminaAon	

8135028:	support	for	vectorizing	double	precision	sqrt	

8076284:	Improve	vectorizaAon	of	parallel	streams	

8139340:	SuperWord	enhancement	to	support	vector	condiAonal	move	(CMovVD)	on	
Intel	AVX	cpu	

	

102	

JDK	9:	Other	Enhancements	in	SuperWord	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Masked	vector	operaAons	
	if	(B[i]	>	0)	A[i]	=	B[i];	
	

•  ScaZer/Gather	
A[i]	=	B[i]	+	C[D[i]];	//	indirect	access	
	

• Conflict	DetecAon	
A[B[i]]++;	 	 				//	histogram	

	
	

103	

What	else	in	AVX-512?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	MAX;	i++)	
				if	(B[i]	>	0)	{	
								A[i]	=	B[i];	
				}	
	

104	

If-conversion	

xmm0	

B[i+0]	B[i+1]	B[i+2]					B[i+3]	
32	96	128	 64	

B[i:i+3]	>	0	 k1	

B[i+3]	A[i+2]	B[i+1]	A[i+0]	int[]	

0	 0	1	 1	

VMOVDQU32	%xmm0,	%k1,	…		

				A[]	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	MAX;	i++)	
				A[i]	=	B[i]	+	C[D[i]];	
	
	
“Gatherers”:		fetch	data	elements	using	vector-index	memory	addressing.	
	

105	

Indirect	Access	

C[D[i]]	C[D[i+1]]	C[D[i+2]]	C[D[i+3]]	

xmm0	

C[D[i+3]]	C[D[i+2]]	C[D[i+1]]	C[D[i]]	int[]	C[]	

32	96	128	

VGATHERQPD	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	MAX;	i++)	
				A[B[i]]++;	
	
	

106	

Histogram		

A[B[i]]	A[B[i+1]]	A[B[i+2]]	A[B[i+3]]	

xmm0	32	96	128	

VPGATHERDD	

A[B[i+3]]	A[B[i+2]]	A[B[i+1]]	A[B[i]]	int[]	A[]	

A[B[i+3]]+1	A[B[i+2]]+1	A[B[i+1]]+1	A[B[i]]+1	int[]	A[]	

VPSCATTERDD	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	MAX;	i++)	
				A[B[i]]++;	
	
	

107	

Histogram		

A[B[i]]	A[B[i+1]]	A[B[i+2]]	A[B[i+3]]	

xmm0	32	96	128	

VPGATHERDD	

A[B[i+3]]	A[B[i+2]]	A[B[i+1]]	A[B[i]]	int[]	A[]	

A[B[i+3]]+1	A[B[i+2]]+1	A[B[i+1]]+1	A[B[i]]+1	int[]	A[]	

VPSCATTERDD	

B[i]	==	B[j]?	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

for	(int	i	=	0;	i	<	MAX;	i++)	
				A[B[i]]++;	
	
	

108	

Histogram		

A[B[i]]	A[B[i+1]]	A[B[i+2]]	A[B[i+3]]	

xmm0	32	96	128	

VPGATHERDD	

A[B[i+3]]	A[B[i+2]]	A[B[i+1]]	A[B[i]]	int[]	A[]	

A[B[i+3]]+1	A[B[i+2]]+1	A[B[i+1]]+1	A[B[i]]+1	int[]	A[]	

VPSCATTERDD	

Conflict	detecKon!	
VPCONFLICTD	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  100s	of	vector	instrucAons	on	x86	
•  Intel	intrinsic	instrucAons	

– MMX:	~120	
– SSE:	~130	
– SSE2/3/SSSE3/4.1/4.2:	~260	
– AVX/AVX2:	~380	

Vector	ISA	Extensions	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  1000s	of	vector	instrucAons	on	x86	
•  Intel	intrinsic	instrucAons	

– MMX:	~120	
– SSE:	~130	
– SSE2/3/SSSE3/4.1/4.2:	~260	
– AVX/AVX2:	~380	
– AVX-512:	~3800		

Vector	ISA	Extensions	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

UTF-8	 UTF-16	

ASCII	(1	byte)	 0aaaaaaa	 00000000	0aaaaaaa	
Basic	MulAlingual	Plane	
(2	or	3	bytes)	

110bbbbb	10aaaaaa	 00000bbb	bbaaaaaa	
1110cccc	10bbbbbb	10aaaaaa	 ccccbbbb	bbaaaaaa	

Supplementary	Planes		
(4	bytes)	

11110ddd	10ddcccc		
10bbbbbb	10aaaaaa		
uuuu	=	ddddd	-	1	

110110uu	uuccccbb		
110111bb	bbaaaaaa	

113	

Use	Case:	UTF-8	<=>	UTF-16	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 114	

Use	Case:	UTF-8	<=>	UTF-16	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Superword	opAmizaAons	can	be	very	briZle	
– doesn’t	(and	can’t)	cover	all	the	use	cases	

•  Intrinsics	are	point	fixes,	not	general		
– powerful,	lightweight,	and	flexible	
– high	development	costs	

•  JNI	is	hard	to	develop	and	maintain	
– interoperability	overhead	between	Java	&	naAve	code	
– CPU	dispatching	is	required	

Java	and	SIMD	today	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Vector	API	
Embrace	explicit	vectorizaKon	

116	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Project	Panama	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	
The	following	is	intended	to	outline	our	general	product	direcAon.	It	is	intended	for	
informaAon	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	funcAonality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	Aming	of	any	features	or	
funcAonality	described	for	Oracle’s	products	remains	at	the	sole	discreAon	of	Oracle.	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MoAvaAon	

Expose data-parallel operations
through a cross-platform API

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Int8Vector	x	=	...,	y	=	...;				//	vectors	of	8	ints	
Int8Vector	z	=	x.add(y);				//	element-wise	addi4on	
	

120	

MoAvaAon	

vpaddd	%ymm1,%ymm0,%ymm0	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Maximally	expressive	and	portable	API	
– “principle	of	least	astonishment”	
– uniform	coverage	operaAons	and	data	types	
– type-safe	

• Performant	
– High	quality	of	generated	code	
– CompeAAve	with	exisAng	faciliAes	for	auto-vectorizaAon	

• Graceful	performance	degradaAon	
– fallback	for	"holes"	in	naAve	architectures	

121	

Goals	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Draw	API	proposed	by	John	Rose	
– Immutable	Vector	type		
– parameterized	by	element	type	&	size	(Vector<E,S>)		

• Prototype	ImplementaAon	in	Panama	
– int,	float,	long,	and	double	elements	supported	

•  Int128Vector,	Int256Vector,	…	
– based	on	Machine	Code	Snippets	&	“super-longs”	(Long2,	Long4,	Long8)		

122	

Current	Status	

Vector<Integer,	S256Bit>	x	=	...,	y	=	...;	//	vectors	of	8	ints	
Vector<Integer,	S256Bit>	z	=	x.add(y);					//	element-wise	addition	
	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  java.lang.Long2	/	Long4	/	Long8	/	…	
– represent	128/256/512-bit	values	

•  “well-known“	to	the	JVM	
– special	treatment	in	the	JVM	
– C2	knows	how	to	map	the	values	to	
appropriate	vector	registers	

Raw	Vectors	

//	128-bit	vector.	
public	/*	value	*/	final	class	Long2	{	
				private	final	long	l1,	l2;	//	FIXME	
	
				private	Long2()	{	throw	new	Error();	}	
	
				@HotSpotIntrinsicCandidate	
				public	static	native	Long2	make(long	lo,	long	hi);	
	
				@HotSpotIntrinsicCandidate	
				public	native	long	extract(int	i);	
	
				@HotSpotIntrinsicCandidate	
				public	boolean	equals(Long2	v)	{	...	}	
	
				...	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

JVM	vs	Hardware:	Impedance	Mismatch	

size	
(bits)	 8	 16	 32	 64	 128	 256	 512	 …	

x86	
regs	 AL	 AX	 EAX	 RAX	 XMM0	 YMM0	 ZMM0	 -	

JVM	 B	 S	 I	 J	 j.l.Long2	 j.l.Long4	 j.l.Long8	 …	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• OpAmize	away	vector	boxes	in	the	code	
– required	for	mapping	Vector	instances	to	vector	registers	in	generated	code	
– Vector<Integer,S256Bits>	=>	vector	register	(ymm)	on	x86/AVX	
– crucial	for	decent	performance	

•  Escape	Analysis	in	C2	
– doesn’t	cover	all	the	cases	(e.g.,	non-trivial	control	flow)	
– briZle	(depends	on	inlining	decisions;	easy	for	a	user	to	leak	an	instance)	

125	

Vector	Box	EliminaAon	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Value	Types	(Project	Valhalla)	for	the	rescue!	
– represent	super-longs	&	typed	vectors	as	value	types	
– let	the	JIT-compiler	do	the	rest	

• Minimal	Value	Types,	as	the	first	step	
– hZp://cr.openjdk.java.net/~jrose/values/shady-values.html	

	

126	

Vector	box	eliminaAon	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Valhalla	JVM	vs	Hardware	

size	
(bits)	 8	 16	 32	 64	 128	 256	 512	 …	

x86	
regs	 AL	 AX	 EAX	 RAX	 XMM0	 YMM0	 ZMM0	 -	

JVM	 B	 S	 I	 J	 j.l.Long2	 j.l.Long4	 j.l.Long8	 …	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	

128	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  SIMD	ISA	extensions	
– very	irregular	on	x86	
– hard	to	uAlize	in	cross-plaxorm	manner	

•  JVM	
– auto-vectorizaAon	

•  briZle	
•  can’t	cover	all	the	cases	

– intrinsics	
•  pros:	powerful,	lightweight,	and	flexible	
•  cons:	point	fixes,	high	development	costs	

129	

Summary	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  JDK	9	
– enhancements	in	auto-vectorizaAon	

•  parAal	AVX-512	support,	code	shape	improvements	on	x86	

– new	methods	and	intrinsics	
• Math.fma(),	Arrays.vectorizedMismatch()	

	

• Vector	API	
– easy	&	reliable	way	to	write	performant	vectorized	code	
– work	in	progress!	

•  under	acAve	development	in	Project	Panama	

130	

Summary:	Future	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	
The	preceding	is	intended	to	outline	our	general	product	direcAon.	It	is	intended	for	
informaAon	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	funcAonality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	Aming	of	any	features	or	
funcAonality	described	for	Oracle’s	products	remains	at	the	sole	discreAon	of	Oracle.	

131	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Vector	interface:	hZp://cr.openjdk.java.net/~jrose/arrays/vector/Vector.java	
•  Prototype:	hZp://hg.openjdk.java.net/panama/panama/jdk/file/Ap/test/panama/vector-api-patchable	

•  Minimal	Value	Types:	hZp://cr.openjdk.java.net/~jrose/values/shady-values.html	

•  Super-longs:	
hZp://hg.openjdk.java.net/panama/panama/jdk/file/0243d8ef6bd1/src/java.base/share/classes/java/
lang/Long2.java	

•  Machine	Code	Snippets:	hZp://cr.openjdk.java.net/~vlivanov/talks/2016_JVMLS_MachineCodeSnippets.pdf	

132	

Materials	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Thank	you!	
vladimir.x.ivanov@oracle.com	

@iwan0www	
	

